The transverse entropy functional and the Sasaki-Ricci flow
Author:
Tristan C. Collins
Journal:
Trans. Amer. Math. Soc. 365 (2013), 1277-1303
MSC (2010):
Primary 53C25., 53C44
DOI:
https://doi.org/10.1090/S0002-9947-2012-05601-7
Published electronically:
September 19, 2012
MathSciNet review:
3003265
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce two new functionals, inspired by the work of Perelman, which are monotonic along the Sasaki-Ricci flow. We relate their gradient flow, via diffeomorphisms preserving the foliated structure of the manifold, to the transverse Ricci flow. Finally, when the basic first Chern class is positive, we employ these new functionals to prove a uniform $C^{0}$ bound for the transverse scalar curvature, and a uniform $C^{1}$ bound for the transverse Ricci potential along the Sasaki-Ricci flow.
- Charles P. Boyer and Krzysztof Galicki, Einstein manifolds and contact geometry, Proc. Amer. Math. Soc. 129 (2001), no. 8, 2419–2430. MR 1823927, DOI https://doi.org/10.1090/S0002-9939-01-05943-3
- Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR 2382957
- Charles P. Boyer, Krzysztof Galicki, and Santiago R. Simanca, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008), no. 3, 705–733. MR 2386725, DOI https://doi.org/10.1007/s00220-008-0429-1
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, DOI https://doi.org/10.1007/BF01389058
- Yves Carrière, Les propriétés topologiques des flots riemanniens retrouvées à l’aide du théorème des variétés presque plates, Math. Z. 186 (1984), no. 3, 393–400 (French). MR 744829, DOI https://doi.org/10.1007/BF01174892
- Jeff Cheeger and Gang Tian, On the cone structure at infinity of Ricci flat manifolds with Euclidean volume growth and quadratic curvature decay, Invent. Math. 118 (1994), no. 3, 493–571. MR 1296356, DOI https://doi.org/10.1007/BF01231543
- Bennett Chow and Dan Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, vol. 110, American Mathematical Society, Providence, RI, 2004. MR 2061425
- B. Chow et. al., The Ricci flow: techniques and applications, Volume 1, Mathematical Surveys and Monographs. American Mathematical Society, 2007.
- Aziz El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), no. 1, 57–106 (French, with English summary). MR 1042454
- Manolo Eminenti, Gabriele La Nave, and Carlo Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345–367. MR 2448435, DOI https://doi.org/10.1007/s00229-008-0210-y
- Akito Futaki, Hajime Ono, and Guofang Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom. 83 (2009), no. 3, 585–635. MR 2581358
- Jerome P. Gauntlett, Dario Martelli, James Sparks, and Daniel Waldram, Sasaki-Einstein metrics on $S^2\times S^3$, Adv. Theor. Math. Phys. 8 (2004), no. 4, 711–734. MR 2141499
- Jerome P. Gauntlett, Dario Martelli, James Sparks, and Shing-Tung Yau, Obstructions to the existence of Sasaki-Einstein metrics, Comm. Math. Phys. 273 (2007), no. 3, 803–827. MR 2318866, DOI https://doi.org/10.1007/s00220-007-0213-7
- Michał Godliński, Wojciech Kopczyński, and Paweł Nurowski, Locally Sasakian manifolds, Classical Quantum Gravity 17 (2000), no. 18, L105–L115. MR 1791091, DOI https://doi.org/10.1088/0264-9381/17/18/101
- Alfred Gray, Tubes, 2nd ed., Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, 2004. With a preface by Vicente Miquel. MR 2024928
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Franz W. Kamber and Philippe Tondeur, de Rham-Hodge theory for Riemannian foliations, Math. Ann. 277 (1987), no. 3, 415–431. MR 891583, DOI https://doi.org/10.1007/BF01458323
- B. Kleiner and J. Lott, Notes on Perelman’s papers, preprint, arXiv:math.DG/0605667.
- Dario Martelli, James Sparks, and Shing-Tung Yau, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), no. 3, 611–673. MR 2399609, DOI https://doi.org/10.1007/s00220-008-0479-4
- Miroslav Lovrić, Maung Min-Oo, and Ernst A. Ruh, Deforming transverse Riemannian metrics of foliations, Asian J. Math. 4 (2000), no. 2, 303–314. MR 1797582, DOI https://doi.org/10.4310/AJM.2000.v4.n2.a1
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint, arxiv:math.DG/0211159.
- D. H. Phong, Jian Song, Jacob Sturm, and Ben Weinkove, The Kähler-Ricci flow and the $\overline {\partial }$ operator on vector fields, J. Differential Geom. 81 (2009), no. 3, 631–647. MR 2487603
- D. H. Phong, Natasa Sesum, and Jacob Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613–632. MR 2379807
- D. H. Phong and Jacob Sturm, Lectures on stability and constant scalar curvature, Current developments in mathematics, 2007, Int. Press, Somerville, MA, 2009, pp. 101–176. MR 2532997
- Duong H. Phong and Jacob Sturm, On stability and the convergence of the Kähler-Ricci flow, J. Differential Geom. 72 (2006), no. 1, 149–168. MR 2215459
- O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Functional Analysis 42 (1981), no. 1, 110–120. MR 620582, DOI https://doi.org/10.1016/0022-1236%2881%2990050-1
- Natasa Sesum and Gang Tian, Bounding scalar curvature and diameter along the Kähler Ricci flow (after Perelman), J. Inst. Math. Jussieu 7 (2008), no. 3, 575–587. MR 2427424, DOI https://doi.org/10.1017/S1474748008000133
- Knut Smoczyk, Guofang Wang, and Yongbing Zhang, The Sasaki-Ricci flow, Internat. J. Math. 21 (2010), no. 7, 951–969. MR 2671532, DOI https://doi.org/10.1142/S0129167X10006331
- J. Sparks, Sasaki-Einstein manifolds, preprint, arXiv: 1004.2461.
- Gang Tian and Xiaohua Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math. Soc. 20 (2007), no. 3, 675–699. MR 2291916, DOI https://doi.org/10.1090/S0894-0347-06-00552-2
- Philippe Tondeur, Foliations on Riemannian manifolds, Universitext, Springer-Verlag, New York, 1988. MR 934020
- Valentino Tosatti, Kähler-Ricci flow on stable Fano manifolds, J. Reine Angew. Math. 640 (2010), 67–84. MR 2629688, DOI https://doi.org/10.1515/CRELLE.2010.019
- Shing-Tung Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28. MR 1216573
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C25., 53C44
Retrieve articles in all journals with MSC (2010): 53C25., 53C44
Additional Information
Tristan C. Collins
Affiliation:
Department of Mathematics, Columbia University, New York, New York 10027
MR Author ID:
1003845
Email:
tcollins@math.columbia.edu
Received by editor(s):
March 31, 2011
Published electronically:
September 19, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.