Closed geodesics in Lorentzian surfaces
HTML articles powered by AMS MathViewer
- by Stefan Suhr PDF
- Trans. Amer. Math. Soc. 365 (2013), 1469-1486 Request permission
Abstract:
We show that every closed Lorentzian surface contains at least two closed geodesics. Explicit examples show the optimality of this claim. Refining this result we relate the least number of closed geodesics to the causal structure of the surface and the homotopy type of the Lorentzian metric.References
- Leonardo Biliotti, Francesco Mercuri, and Paolo Piccione, On a Gromoll-Meyer type theorem in globally hyperbolic stationary spacetimes, Comm. Anal. Geom. 16 (2008), no. 2, 333–393. MR 2425470
- M. Caponio, M. Javaloyes and A. Masiello. On the energy functional on Finsler manifolds and applications to stationary spacetimes, arXiv:math/0702323v3, (2009)
- Yves Carrière and Luc Rozoy, Complétude des métriques lorentziennes de $\textbf {T}^2$ et difféormorphismes du cercle, Bol. Soc. Brasil. Mat. (N.S.) 25 (1994), no. 2, 223–235 (French, with English summary). MR 1306563, DOI 10.1007/BF01321310
- José Luis Flores, Miguel Ángel Javaloyes, and Paolo Piccione, Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field, Math. Z. 267 (2011), no. 1-2, 221–233. MR 2772249, DOI 10.1007/s00209-009-0617-5
- Gregory J. Galloway, Closed timelike geodesics, Trans. Amer. Math. Soc. 285 (1984), no. 1, 379–388. MR 748844, DOI 10.1090/S0002-9947-1984-0748844-6
- Gregory J. Galloway, Compact Lorentzian manifolds without closed nonspacelike geodesics, Proc. Amer. Math. Soc. 98 (1986), no. 1, 119–123. MR 848888, DOI 10.1090/S0002-9939-1986-0848888-7
- Robert P. Geroch, Topology in general relativity, J. Mathematical Phys. 8 (1967), 782–786. MR 213139, DOI 10.1063/1.1705276
- Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437–449. MR 270697, DOI 10.1063/1.1665157
- Mohammed Guediri, On the existence of closed timelike geodesics in compact spacetimes, Math. Z. 239 (2002), no. 2, 277–291. MR 1888225, DOI 10.1007/s002090100295
- S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge University Press, London-New York, 1973. MR 0424186
- Gilbert Hector and Ulrich Hirsch, Introduction to the geometry of foliations. Part A, 2nd ed., Aspects of Mathematics, vol. 1, Friedr. Vieweg & Sohn, Braunschweig, 1986. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy. MR 881799, DOI 10.1007/978-3-322-90115-6
- Gustav A. Hedlund, Geodesics on a two-dimensional Riemannian manifold with periodic coefficients, Ann. of Math. (2) 33 (1932), no. 4, 719–739. MR 1503086, DOI 10.2307/1968215
- Morris W. Hirsch and Stephen Smale, Differential equations, dynamical systems, and linear algebra, Pure and Applied Mathematics, Vol. 60, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0486784
- A. Masiello. Variational methods in Lorentzian geometry Harlow: Longman Scientific & Technical (1994).
- Ettore Minguzzi and Miguel Sánchez, The causal hierarchy of spacetimes, Recent developments in pseudo-Riemannian geometry, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008, pp. 299–358. MR 2436235, DOI 10.4171/051-1/9
- B. O’Neill. Semi-Riemannian geometry, Pure and Applied Mathematics, Vol. 103, New York-London: Academic Press (1983).
- Roger Penrose, Techniques of differential topology in relativity, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972. MR 0469146
- Alfonso Romero and Miguel Sánchez, On completeness of certain families of semi-Riemannian manifolds, Geom. Dedicata 53 (1994), no. 1, 103–117. MR 1299888, DOI 10.1007/BF01264047
- Miguel Sánchez, Structure of Lorentzian tori with a Killing vector field, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1063–1080. MR 1376554, DOI 10.1090/S0002-9947-97-01745-5
- Miguel Sánchez, On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes, Differential Geom. Appl. 24 (2006), no. 1, 21–32. MR 2193746, DOI 10.1016/j.difgeo.2005.06.008
- E. Schelling. Maximale Geodätische auf Lorentzmannigfaltigkeiten, Diplomarbeit, Freiburg, 1995.
- Frank J. Tipler, Existence of closed timelike geodesics in Lorentz spaces, Proc. Amer. Math. Soc. 76 (1979), no. 1, 145–147. MR 534406, DOI 10.1090/S0002-9939-1979-0534406-6
Additional Information
- Stefan Suhr
- Affiliation: Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
- MR Author ID: 958131
- Email: stefan.suhr@mathematik.uni-hamburg.de
- Received by editor(s): November 22, 2010
- Received by editor(s) in revised form: June 27, 2011
- Published electronically: July 11, 2012
- © Copyright 2012 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 365 (2013), 1469-1486
- MSC (2010): Primary 53C22, 53C50
- DOI: https://doi.org/10.1090/S0002-9947-2012-05691-1
- MathSciNet review: 3003271