On the zeroes of Goss polynomials
HTML articles powered by AMS MathViewer
- by Ernst-Ulrich Gekeler PDF
- Trans. Amer. Math. Soc. 365 (2013), 1669-1685 Request permission
Abstract:
Goss polynomials provide a substitute of trigonometric functions and their identities for the arithmetic of function fields. We study the Goss polynomials $G_k(X)$ for the lattice $A=\mathbb {F}_q[T]$ and obtain, in the case when $q$ is prime, an explicit description of the Newton polygon $NP(G_k(X))$ of the $k$-th Goss polynomial in terms of the $q$-adic expansion of $k-1$. In the case of an arbitrary $q$, we have similar results on $NP(G_k(X))$ for special classes of $k$, and we formulate a general conjecture about its shape. The proofs use rigid-analytic techniques and the arithmetic of power sums of elements of $A$.References
- V. Bosser and F. Pellarin, Hyperdifferential properties of Drinfeld quasi-modular forms, Int. Math. Res. Not. IMRN 11 (2008), Art. ID rnn032, 56. MR 2428858, DOI 10.1093/imrn/rnn032
- Vincent Bosser and Federico Pellarin, On certain families of Drinfeld quasi-modular forms, J. Number Theory 129 (2009), no. 12, 2952–2990. MR 2560846, DOI 10.1016/j.jnt.2009.04.014
- Ernst-Ulrich Gekeler, Drinfel′d modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338, DOI 10.1007/BFb0072692
- Ernst-Ulrich Gekeler, On the coefficients of Drinfel′d modular forms, Invent. Math. 93 (1988), no. 3, 667–700. MR 952287, DOI 10.1007/BF01410204
- Ernst-Ulrich Gekeler, On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11–26. MR 960231, DOI 10.1016/0022-314X(88)90023-6
- Ernst-Ulrich Gekeler, Zero distribution and decay at infinity of Drinfeld modular coefficient forms, Int. J. Number Theory 7 (2011), no. 3, 671–693. MR 2805575, DOI 10.1142/S1793042111004307
- Lothar Gerritzen and Marius van der Put, Schottky groups and Mumford curves, Lecture Notes in Mathematics, vol. 817, Springer, Berlin, 1980. MR 590243
- David Goss, The algebraist’s upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391–415. MR 561525, DOI 10.1090/S0273-0979-1980-14751-5
- David Goss, Basic structures of function field arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 35, Springer-Verlag, Berlin, 1996. MR 1423131, DOI 10.1007/978-3-642-61480-4
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Federico Pellarin, Aspects de l’indépendance algébrique en caractéristique non nulle (d’après Anderson, Brownawell, Denis, Papanikolas, Thakur, Yu, et al.), Astérisque 317 (2008), Exp. No. 973, viii, 205–242 (French, with French summary). Séminaire Bourbaki. Vol. 2006/2007. MR 2487735
- http://oeis.org/wiki/Eulerian_polynomials.
Additional Information
- Ernst-Ulrich Gekeler
- Affiliation: FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11 50, D-66041 Saarbrücken, Germany
- Email: gekeler@math.uni-sb.de
- Received by editor(s): December 22, 2010
- Received by editor(s) in revised form: August 31, 2011
- Published electronically: October 15, 2012
- © Copyright 2012 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 365 (2013), 1669-1685
- MSC (2010): Primary 11F52; Secondary 11G09, 11J93, 11T55
- DOI: https://doi.org/10.1090/S0002-9947-2012-05699-6
- MathSciNet review: 3003278