Hochschild (co-)homology of schemes with tilting object
HTML articles powered by AMS MathViewer
- by Ragnar-Olaf Buchweitz and Lutz Hille PDF
- Trans. Amer. Math. Soc. 365 (2013), 2823-2844 Request permission
Abstract:
Given a $k$–scheme $X$ that admits a tilting object $T$, we prove that the Hochschild (co-)homology of $X$ is isomorphic to that of $A=\operatorname {End}_{X}(T)$. We treat more generally the relative case when $X$ is flat over an affine scheme $Y=\operatorname {Spec} R$, and the tilting object satisfies an appropriate Tor-independence condition over $R$. Among applications, Hochschild homology of $X$ over $Y$ is seen to vanish in negative degrees, smoothness of $X$ over $Y$ is shown to be equivalent to that of $A$ over $R$, and for $X$ a smooth projective scheme we obtain that Hochschild homology is concentrated in degree zero. Using the Hodge decomposition of Hochschild homology in characteristic zero, for $X$ smooth over $Y$ the Hodge groups $H^{q}(X,\Omega _{X/Y}^{p})$ vanish for $p < q$, while in the absolute case they even vanish for $p\neq q$.
We illustrate the results for crepant resolutions of quotient singularities, in particular for the total space of the canonical bundle on projective space.
References
- Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1997. Corrected reprint of the 1995 original. MR 1476671
- Dagmar Baer, Tilting sheaves in representation theory of algebras, Manuscripta Math. 60 (1988), no. 3, 323–347. MR 928291, DOI 10.1007/BF01169343
- Arend Bayer and Yuri I. Manin, (Semi)simple exercises in quantum cohomology, The Fano Conference, Univ. Torino, Turin, 2004, pp. 143–173. MR 2112573
- A. A. Beĭlinson, Coherent sheaves on $\textbf {P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69 (Russian). MR 509388
- George M. Bergman and Warren Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978), no. 2, 293–337. MR 531320, DOI 10.2140/pjm.1978.79.293
- Raf Bocklandt, Travis Schedler, and Michael Wemyss, Superpotentials and higher order derivations, J. Pure Appl. Algebra 214 (2010), no. 9, 1501–1522. MR 2593679, DOI 10.1016/j.jpaa.2009.07.013
- Christian Böhning, Derived categories of coherent sheaves on rational homogeneous manifolds, Doc. Math. 11 (2006), 261–331. MR 2262935
- A. I. Bondal, Representations of associative algebras and coherent sheaves, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25–44 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 1, 23–42. MR 992977, DOI 10.1070/IM1990v034n01ABEH000583
- A. I. Bondal, Helices, representations of quivers and Koszul algebras, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 75–95. MR 1074784, DOI 10.1017/CBO9780511721526.008
- Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327–344. MR 1818984, DOI 10.1023/A:1002470302976
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- Tom Bridgeland, t-structures on some local Calabi-Yau varieties, J. Algebra 289 (2005), no. 2, 453–483. MR 2142382, DOI 10.1016/j.jalgebra.2005.03.016
- Tom Bridgeland and David Stern, Helices on del Pezzo surfaces and tilting Calabi-Yau algebras, Adv. Math. 224 (2010), no. 4, 1672–1716. MR 2646308, DOI 10.1016/j.aim.2010.01.018
- Brylinski, J.-L.: A correspondence dual to McKay’s, preprint 1996, 16 pp.; arXiv.org:alg-geom/9612003
- Ragnar-Olaf Buchweitz, Finite representation type and periodic Hochschild (co-)homology, Trends in the representation theory of finite-dimensional algebras (Seattle, WA, 1997) Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 81–109. MR 1676212, DOI 10.1090/conm/229/03311
- Ragnar-Olaf Buchweitz and Hubert Flenner, Global Hochschild (co-)homology of singular spaces, Adv. Math. 217 (2008), no. 1, 205–242. MR 2357326, DOI 10.1016/j.aim.2007.06.012
- Ragnar-Olaf Buchweitz and Hubert Flenner, The global decomposition theorem for Hochschild (co-)homology of singular spaces via the Atiyah-Chern character, Adv. Math. 217 (2008), no. 1, 243–281. MR 2357327, DOI 10.1016/j.aim.2007.06.013
- Căldăraru, A.: The Mukai pairing, I: the Hochschild structure, preprint 2003, 32 pp., arXiv.org:math/0308079
- Andrei Căldăraru, Anthony Giaquinto, and Sarah Witherspoon, Algebraic deformations arising from orbifolds with discrete torsion, J. Pure Appl. Algebra 187 (2004), no. 1-3, 51–70. MR 2027895, DOI 10.1016/j.jpaa.2003.10.004
- J. Daniel Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math. 136 (1998), no. 2, 284–339. MR 1626856, DOI 10.1006/aima.1998.1735
- L. Costa and R. M. Miró-Roig, Derived categories of projective bundles, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2533–2537. MR 2146195, DOI 10.1090/S0002-9939-05-07846-9
- Boris Dubrovin, Geometry and analytic theory of Frobenius manifolds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 315–326. MR 1648082
- Marco Farinati, Hochschild duality, localization, and smash products, J. Algebra 284 (2005), no. 1, 415–434. MR 2115022, DOI 10.1016/j.jalgebra.2004.09.009
- Victor Ginzburg and Dmitry Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), no. 1, 1–57. MR 2065506, DOI 10.1016/j.aim.2003.07.006
- A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222 (French). MR 217084
- A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167. MR 217085
- Yang Han, Hochschild (co)homology dimension, J. London Math. Soc. (2) 73 (2006), no. 3, 657–668. MR 2241972, DOI 10.1112/S002461070602299X
- Dieter Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988) Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989, pp. 108–126. MR 1035222, DOI 10.1007/BFb0084073
- Lutz Hille and Markus Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230–1280. MR 2822868, DOI 10.1112/S0010437X10005208
- Lutz Hille and Michel Van den Bergh, Fourier-Mukai transforms, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 147–177. MR 2384610, DOI 10.1017/CBO9780511735134.007
- G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58–67. MR 11076, DOI 10.2307/1969145
- Bernhard Keller, Derived categories and tilting, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 49–104. MR 2384608, DOI 10.1017/CBO9780511735134.005
- Bernhard Keller, Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190 (2004), no. 1-3, 177–196. MR 2043327, DOI 10.1016/j.jpaa.2003.10.030
- Bernhard Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998), no. 1-3, 223–273. MR 1492902, DOI 10.1016/S0022-4049(96)00085-0
- Amnon Neeman, The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736, DOI 10.24033/asens.1659
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Daniel Quillen, On the (co-) homology of commutative rings, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 65–87. MR 0257068
- Jeremy Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), no. 1, 37–48. MR 1099084, DOI 10.1112/jlms/s2-43.1.37
- Helices and vector bundles, London Mathematical Society Lecture Note Series, vol. 148, Cambridge University Press, Cambridge, 1990. Seminaire Rudakov; Translated from the Russian by A. D. King, P. Kobak and A. Maciocia. MR 1074776
- Alexander Samokhin, Some remarks on the derived categories of coherent sheaves on homogeneous spaces, J. Lond. Math. Soc. (2) 76 (2007), no. 1, 122–134. MR 2351612, DOI 10.1112/jlms/jdm038
- A. V. Samokhin, The derived category of coherent sheaves on $LG_3^\textbf {C}$, Uspekhi Mat. Nauk 56 (2001), no. 3(339), 177–178 (Russian); English transl., Russian Math. Surveys 56 (2001), no. 3, 592–594. MR 1859740, DOI 10.1070/RM2001v056n03ABEH000410
- Anne V. Shepler and Sarah Witherspoon, Finite groups acting linearly: Hochschild cohomology and the cup product, Adv. Math. 226 (2011), no. 4, 2884–2910. MR 2764878, DOI 10.1016/j.aim.2010.09.022
- Richard G. Swan, Hochschild cohomology of quasiprojective schemes, J. Pure Appl. Algebra 110 (1996), no. 1, 57–80. MR 1390671, DOI 10.1016/0022-4049(95)00091-7
- Bertrand Toën, The homotopy theory of $dg$-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, DOI 10.1007/s00222-006-0025-y
- Michel van den Bergh, Erratum to: “A relation between Hochschild homology and cohomology for Gorenstein rings” [Proc. Amer. Math. Soc. 126 (1998), no. 5, 1345–1348; MR1443171 (99m:16013)], Proc. Amer. Math. Soc. 130 (2002), no. 9, 2809–2810. MR 1900889, DOI 10.1090/S0002-9939-02-06684-4
Additional Information
- Ragnar-Olaf Buchweitz
- Affiliation: Department of Computer and Mathematical Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada M1C 1A4
- MR Author ID: 42840
- Email: ragnar@utsc.utoronto.ca
- Lutz Hille
- Affiliation: Mathematisches Institut der Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
- Email: lutzhille@uni-muenster.de
- Received by editor(s): September 13, 2010
- Received by editor(s) in revised form: February 25, 2011
- Published electronically: December 11, 2012
- Additional Notes: The first author gratefully acknowledges partial support through NSERC grant 3-642-114-80, while the second author thanks SFB 478 “Geometrische Strukturen in der Mathematik” for its support.
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 2823-2844
- MSC (2010): Primary 14F05, 16S38, 16E40, 18E30
- DOI: https://doi.org/10.1090/S0002-9947-2012-05577-2
- MathSciNet review: 3034449