Bilinear decompositions and commutators of singular integral operators
HTML articles powered by AMS MathViewer
- by Luong Dang Ky PDF
- Trans. Amer. Math. Soc. 365 (2013), 2931-2958 Request permission
Abstract:
Let $b$ be a $BMO$-function. It is well known that the linear commutator $[b, T]$ of a Calderón-Zygmund operator $T$ does not, in general, map continuously $H^1(\mathbb R^n)$ into $L^1(\mathbb R^n)$. However, Pérez showed that if $H^1(\mathbb R^n)$ is replaced by a suitable atomic subspace $\mathcal H^1_b(\mathbb R^n)$, then the commutator is continuous from $\mathcal H^1_b(\mathbb R^n)$ into $L^1(\mathbb R^n)$. In this paper, we find the largest subspace $H^1_b(\mathbb R^n)$ such that all commutators of Calderón-Zygmund operators are continuous from $H^1_b(\mathbb R^n)$ into $L^1(\mathbb R^n)$. Some equivalent characterizations of $H^1_b(\mathbb R^n)$ are also given. We also study the commutators $[b,T]$ for $T$ in a class $\mathcal K$ of sublinear operators containing almost all important operators in harmonic analysis. When $T$ is linear, we prove that there exists a bilinear operator $\mathfrak R= \mathfrak R_T$ mapping continuously $H^1(\mathbb R^n)\times BMO(\mathbb R^n)$ into $L^1(\mathbb R^n)$ such that for all $(f,b)\in H^1(\mathbb R^n)\times BMO(\mathbb R^n)$ we have \begin{equation}[b,T](f)= \mathfrak R(f,b) + T(\mathfrak S(f,b)), \end{equation} where $\mathfrak S$ is a bounded bilinear operator from $H^1(\mathbb R^n)\times BMO(\mathbb R^n)$ into $L^1(\mathbb R^n)$ which does not depend on $T$. In the particular case of $T$ a Calderón-Zygmund operator satisfying $T1=T^*1=0$ and $b$ in $BMO^\textrm {log}(\mathbb R^n)$, the generalized $BMO$ type space that has been introduced by Nakai and Yabuta to characterize multipliers of $BMO(\mathbb {R}^n)$, we prove that the commutator $[b,T]$ maps continuously $H^1_b(\mathbb R^n)$ into $h^1(\mathbb R^n)$. Also, if $b$ is in $BMO(\mathbb R^n)$ and $T^*1 = T^*b = 0$, then the commutator $[b, T]$ maps continuously $H^1_b (\mathbb R^n)$ into $H^1(\mathbb R^n)$. When $T$ is sublinear, we prove that there exists a bounded subbilinear operator $\mathfrak R= \mathfrak R_T: H^1(\mathbb R^n)\times BMO(\mathbb R^n)\to L^1(\mathbb R^n)$ such that for all $(f,b)\in H^1(\mathbb R^n)\times BMO(\mathbb R^n)$ we have \begin{equation}|T(\mathfrak S(f,b))|- \mathfrak R(f,b)\leq |[b,T](f)|\leq \mathfrak R(f,b) + |T(\mathfrak S(f,b))|. \end{equation}
The bilinear decomposition (1) and the subbilinear decomposition (2) allow us to give a general overview of all known weak and strong $L^1$-estimates.
References
- Josefina Álvarez, Richard J. Bagby, Douglas S. Kurtz, and Carlos Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), no. 2, 195–209. MR 1211818, DOI 10.4064/sm-104-2-195-209
- Josefina Álvarez and Jorge Hounie, Estimates for the kernel and continuity properties of pseudo-differential operators, Ark. Mat. 28 (1990), no. 1, 1–22. MR 1049640, DOI 10.1007/BF02387364
- Aline Bonami, Justin Feuto, and Sandrine Grellier, Endpoint for the DIV-CURL lemma in Hardy spaces, Publ. Mat. 54 (2010), no. 2, 341–358. MR 2675927, DOI 10.5565/PUBLMAT_{5}4210_{0}3
- A. Bonami, S. Grellier and L. D. Ky, Paraproducts and products of functions in $BMO(\mathbb R^n)$ and $H^1(\mathbb R^n)$ through wavelets, to appear in J. Math. Pure Appl., arXiv: 1103.1822.
- Gérard Bourdaud, Remarques sur certains sous-espaces de $\textrm {BMO}(\Bbb R^n)$ et de $\textrm {bmo}(\Bbb R^n)$, Ann. Inst. Fourier (Grenoble) 52 (2002), no. 4, 1187–1218 (French, with English and French summaries). MR 1927078
- Marcin Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math. Soc. 133 (2005), no. 12, 3535–3542. MR 2163588, DOI 10.1090/S0002-9939-05-07892-5
- YanPing Chen and Yong Ding, Commutators of Littlewood-Paley operators, Sci. China Ser. A 52 (2009), no. 11, 2493–2505. MR 2566661, DOI 10.1007/s11425-009-0178-4
- Ronald R. Coifman and Loukas Grafakos, Hardy space estimates for multilinear operators. I, Rev. Mat. Iberoamericana 8 (1992), no. 1, 45–67. MR 1178448, DOI 10.4171/RMI/116
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- R. R. Coifman, R. Rochberg, and Guido Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. MR 412721, DOI 10.2307/1970954
- Galia Dafni, Local VMO and weak convergence in $h^1$, Canad. Math. Bull. 45 (2002), no. 1, 46–59. MR 1884133, DOI 10.4153/CMB-2002-005-2
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Yong Ding, Shan Zhen Lu, and Pu Zhang, Continuity of higher order commutators on certain Hardy spaces, Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 2, 391–404. MR 1910975, DOI 10.1007/s101140200160
- Sylvia Dobyinsky, La “version ondelettes” du théorème du Jacobien, Rev. Mat. Iberoamericana 11 (1995), no. 2, 309–333 (French, with French summary). MR 1344895, DOI 10.4171/RMI/174
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- M. Frazier, R. Torres, and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces $\dot F^{\alpha ,q}_p$, Rev. Mat. Iberoamericana 4 (1988), no. 1, 41–72. MR 1009119, DOI 10.4171/RMI/63
- David Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), no. 1, 27–42. MR 523600
- Yongsheng Han, Detlef Müller, and Dachun Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), no. 13-14, 1505–1537. MR 2269253, DOI 10.1002/mana.200610435
- Eleonor Harboure, Carlos Segovia, and José L. Torrea, Boundedness of commutators of fractional and singular integrals for the extreme values of $p$, Illinois J. Math. 41 (1997), no. 4, 676–700. MR 1468874
- Eugenio Hernández and Guido Weiss, A first course on wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1996. With a foreword by Yves Meyer. MR 1408902, DOI 10.1201/9781420049985
- Peter W. Jones and Jean-Lin Journé, On weak convergence in $H^1(\textbf {R}^d)$, Proc. Amer. Math. Soc. 120 (1994), no. 1, 137–138. MR 1159172, DOI 10.1090/S0002-9939-1994-1159172-3
- L. D. Ky, New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators, submitted, arXiv:1103.3757.
- Ming-Yi Lee, Weighted norm inequalities of Bochner-Riesz means, J. Math. Anal. Appl. 324 (2006), no. 2, 1274–1281. MR 2266557, DOI 10.1016/j.jmaa.2005.07.085
- Wen-ming Li, Shan-zhen Lu, and Hui-xia Mo, The boundedness for commutators of multipliers, Acta Math. Appl. Sin. Engl. Ser. 23 (2007), no. 1, 113–122. MR 2300152, DOI 10.1007/s10255-006-0355-y
- Yan Lin and Shanzhen Lu, Boundedness of commutators on Hardy-type spaces, Integral Equations Operator Theory 57 (2007), no. 3, 381–396. MR 2307817, DOI 10.1007/s00020-006-1461-1
- Zongguang Liu and Shanzhen Lu, Endpoint estimates for commutators of Calderón-Zygmund type operators, Kodai Math. J. 25 (2002), no. 1, 79–88. MR 1891801, DOI 10.2996/kmj/1106171078
- Lanzhe Liu, Continuity for commutators of Littlewood-Paley operators on certain Hardy spaces, J. Korean Math. Soc. 40 (2003), no. 1, 41–60. MR 1945712, DOI 10.4134/JKMS.2003.40.1.041
- Lan Zhe Liu and Shan Zhen Lu, Continuity for maximal multilinear Bochner-Riesz operators on Hardy and Herz-Hardy spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 1, 69–76. MR 2200601, DOI 10.1007/s10114-004-0488-y
- Zongguang Liu, Guozhen Lu, and Shanzhen Lu, Continuity properties for the maximal operator associated with the commutator of the Bochner-Riesz operator, Publ. Mat. 47 (2003), no. 1, 45–69. MR 1970894, DOI 10.5565/PUBLMAT_{4}7103_{0}3
- Liu Lanzhe and Tong Qingshan, Continuity for maximal commutator of Bochner-Riesz operators on some weighted Hardy spaces, Int. J. Math. Math. Sci. 2 (2005), 195–201. MR 2143751, DOI 10.1155/IJMMS.2005.195
- Shanzhen Lu, Qiang Wu, and Dachun Yang, Boundedness of commutators on Hardy type spaces, Sci. China Ser. A 45 (2002), no. 8, 984–997. MR 1942912, DOI 10.1007/BF02879981
- Shan Zhen Lu and Li Fang Xu, Boundedness of some Marcinkiewicz integral operators related to higher order commutators on Hardy spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 1, 105–114. MR 2200606, DOI 10.1007/s10114-005-0545-1
- Stefano Meda, Peter Sjögren, and Maria Vallarino, On the $H^1$-$L^1$ boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2921–2931. MR 2399059, DOI 10.1090/S0002-9939-08-09365-9
- Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. MR 1228209
- Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997. Calderón-Zygmund and multilinear operators; Translated from the 1990 and 1991 French originals by David Salinger. MR 1456993
- Eiichi Nakai and Kôzô Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), no. 2, 207–218. MR 780660, DOI 10.2969/jmsj/03720207
- Carlos Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), no. 1, 163–185. MR 1317714, DOI 10.1006/jfan.1995.1027
- José L. Rubio de Francia, Francisco J. Ruiz, and José L. Torrea, Calderón-Zygmund theory for operator-valued kernels, Adv. in Math. 62 (1986), no. 1, 7–48. MR 859252, DOI 10.1016/0001-8708(86)90086-1
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Mitchell H. Taibleson and Guido Weiss, The molecular characterization of certain Hardy spaces, Representation theorems for Hardy spaces, Astérisque, vol. 77, Soc. Math. France, Paris, 1980, pp. 67–149. MR 604370
- Kewei Wang and Lanzhe Liu, Boundedness for multilinear commutator of multiplier operator on Hardy spaces, Sci. Ser. A Math. Sci. (N.S.) 17 (2009), 19–26. MR 2555808
- Dun Yan Yan, Guo En Hu, and Jia Cheng Lan, Weak-type endpoint estimates for multilinear singular integral operators, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 1, 209–214. MR 2128837, DOI 10.1007/s10114-003-0254-6
- Dachun Yang and Yuan Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. 29 (2009), no. 2, 207–218. MR 2481589, DOI 10.1007/s00365-008-9015-1
- Pu Zhang and Jiukun Hua, Commutators of multipliers on Hardy spaces, Anal. Theory Appl. 21 (2005), no. 3, 226–234. MR 2319191, DOI 10.1007/BF02836952
Additional Information
- Luong Dang Ky
- Affiliation: Department of Mathematics, University of Quy Nhon, 170 An Duong Vuong Street, Quy Nhon City, Vietnam
- MR Author ID: 954241
- Email: dangky@math.cnrs.fr
- Received by editor(s): June 7, 2011
- Published electronically: November 30, 2012
- © Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 2931-2958
- MSC (2010): Primary 42B20; Secondary 42B30, 42B35, 42B25
- DOI: https://doi.org/10.1090/S0002-9947-2012-05727-8
- MathSciNet review: 3034454