ON THE LAW OF THE ITERATED LOGARITHM
FOR THE DISCREPANCY OF LACUNARY SEQUENCES II

CHRISTOPH AISTLEITNER

Abstract. By a classical heuristics, lacunary function systems exhibit many asymptotic properties which are typical for systems of independent random variables. For example, for a large class of functions \(f \) the system \((f(n_k x))_{k \geq 1}\), where \((n_k)_{k \geq 1}\) is a lacunary sequence of integers, satisfies a law of the iterated logarithm (LIL) of the form

\[
(1) \quad c_1 \leq \limsup_{N \to \infty} \frac{\sum_{k=1}^{N} f(n_k x)}{\sqrt{2N \log \log N}} \leq c_2 \quad \text{a.e.,}
\]

where \(c_1, c_2\) are appropriate positive constants. In a previous paper we gave a criterion, formulated in terms of the number of solutions of certain linear Diophantine equations, which guarantees that the value of the \(\limsup \) in (1) equals the \(L^2 \)-norm of \(f \) for a.e. \(x \), which is exactly what one would also expect in the case of i.i.d. random variables. This result can be used to prove a precise LIL for the discrepancy of \((n_k x)_{k \geq 1}\), which corresponds to the Chung-Smirnov LIL for the Kolmogorov-Smirnov-statistic of i.i.d. random variables.

In the present paper we give a full solution of the problem in the case of “stationary” Diophantine behavior, by this means providing a unifying explanation of the aforementioned “regular” LIL behavior and the “irregular” LIL behavior which has been observed by Kac, Erdős, Fortet and others.

1. Introduction and statement of results

By a classical heuristics, lacunary function systems fulfill many limit theorems for systems of independent, identically distributed (i.i.d.) random variables, such as the central limit theorem (CLT), the law of the iterated logarithm (LIL), convergence results, almost sure invariance principles, etc. We have investigated the problem concerning the LIL in an earlier paper [4]; for a general introduction to the topic we refer the reader to our survey article [6].

Let \((n_k)_{k \geq 1}\) be a sequence of positive integers satisfying

\[
(2) \quad \frac{n_{k+1}}{n_k} \geq q > 1, \quad k \geq 1.
\]

Then by a result of Erdős and Gál [10]

\[
(3) \quad \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^{N} \cos 2\pi n_k x \right|}{\sqrt{2N \log \log N}} = \frac{1}{\sqrt{2}} \quad \text{a.e.}
\]

Received by the editors July 21, 2011 and, in revised form, November 1, 2011.

2010 Mathematics Subject Classification. Primary 11K38, 60F15, 11D04, 11J83, 42A55.

Key words and phrases. Discrepancy, law of the iterated logarithm, Diophantine equations, lacunary series.

The author’s research was supported by the Austrian Research Foundation (FWF), Project S9603-N23.

©2012 American Mathematical Society
Reverts to public domain 28 years from publication
Observe that
\[\| \cos 2\pi \cdot \| := \left(\int_0^1 (\cos 2\pi x)^2 \, dx \right)^{1/2} = \frac{1}{\sqrt{2}}, \]
and hence the LIL in (3) is in perfect accordance with the LIL for i.i.d. random variables (where the standard deviation appears on the right-hand side). However, this analogy is not perfect if \(\cos 2\pi x \) is replaced by a general 1-periodic function \(f(x) \). In fact, the precise LIL of the form (3) may even fail for trigonometric polynomials: by an example of Erdős and Fortet (see [17]) we have for \(p(x) = \cos 2\pi x + \cos 4\pi x \) and \(n_k = 2^k + 1, \ k \geq 1, \)

\[\limsup_{N \to \infty} \frac{\sum_{k=1}^N p(n_k x)}{\sqrt{2N \log \log N}} = \sqrt{2} |\cos \pi x| \text{ a.e.}, \]

and by an observation of Fortet [11] (see also Kac [16] and Maruyama [19]) for a large class of 1-periodic functions \(f \) and for \(n_k = 2^k, \ k \geq 1, \)

\[\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N f(n_k x) \right|}{\sqrt{2N \log \log N}} = \sigma \text{ a.e.,} \]

where
\[\sigma^2 = \| f \|^2 + 2 \sum_{j=1}^{\infty} \int_0^1 f(x) f'(2^j x) \, dx \]

(observe that in this case the number \(\sigma \) will in general be different from \(\| f \| \)). There is a significant difference between (4) and (5): while the limsup in (5) still equals a constant a.e., this is not true in (4). This difference can be explained by considering the Diophantine structure of the sequences \((2^k)_{k \geq 1} \) and \((2^k + 1)_{k \geq 1} \): for the sequence \(n_k = 2^k, \ k \geq 1, \) only Diophantine equations of the (homogeneous) form
\[2^\nu n_{k_1} - n_{k_2} = 0 \]

have many solutions \((k_1, k_2) \) (for arbitrary, fixed \(\nu \geq 1 \)), while the Diophantine equations for which many solutions exist in the case \(n_k = 2^k + 1, \ k \geq 1, \) are of the (inhomogeneous) form
\[2^\nu n_{k_1} - n_{k_2} = 2^\nu - 1. \]

Generally it can be said that the probabilistic behavior of systems \((f(n_k x))_{k \geq 1} \) is particularly similar to the behavior of i.i.d. random systems if the number of solutions \((k_1, k_2) \) of linear Diophantine equations of the form
\[a n_{k_1} \pm b n_{k_2} = c \]
is “small” (see [5,7,15]), while “irregular” probabilistic behavior as in (4) may occur if the number of solutions of such Diophantine equations is “large” (see [3,8,14]). This also carries over to the LIL for the discrepancy of \((n_k x)_{k \geq 1} \): in [4] we showed that if the number of solutions \((k_1, k_2), \ k_1, k_2 \leq N, \) of equations of the form (6) is bounded by \(O \left(N (\log N)^{-1-\delta} \right) \) for some \(\delta > 0, \) then

\[\limsup_{N \to \infty} \frac{N D_N(n_k x)}{\sqrt{2N \log \log N}} = \frac{1}{2} \text{ a.e.} \]

(note that the constant \(1/2 \) on the right-hand side of (7) is the same as in the Chung-Smirnov LIL for i.i.d. random variables, see [21, p. 504]). On the other
hand Fukuyama \[12\] proved that

\[
\limsup_{N \to \infty} \frac{N D_N(2^k x)}{\sqrt{2N \log \log N}} = \frac{\sqrt{42}}{9} \quad \text{a.e.,}
\]

and there even exist lacunary sequences \((n_k)_{k \geq 1}\) for which a non-constant function \(\psi(x)\) appears on the right-hand side of (7) instead of the number 1/2 (see \[1\] \[2\] \[14\]).

The purpose of this paper is to give a unifying explanation of these phenomena. More precisely, we will provide exact formulas for the LIL for \(f(n_k x)\) and \(D_N(n_k x)\) in the case when the relative number of solutions of Diophantine equations of the form (6) converges to appropriate coefficients at a certain speed, i.e. if there exist numbers \(\gamma_{j_1,j_2,\nu}\) such that

\[
\# \{(k_1, k_2), (j_1, k_1) \neq (j_2, k_2), 1 \leq k_1, k_2 \leq N : j_1 n_{k_1} - j_2 n_{k_2} = \nu\} \to \gamma_{j_1,j_2,\nu}
\]

as \(N \to \infty\), sufficiently fast. Our result covers all the aforementioned examples and gives a complete solution of the problem in the case of “stationary” Diophantine behavior (i.e. in the case when the quotients on the left-hand side of (9) converge sufficiently fast; if these quotients do not converge at all, the situation can be extraordinarily complicated and as far as we know there exist no results at all for this case).

For \(j_1, j_2, N \geq 1\) and \(\nu \in \mathbb{Z}\) set

\[
S(j_1, j_2, \nu, N) := \# \{(k_1, k_2), (j_1, k_1) \neq (j_2, k_2), 1 \leq k_1, k_2 \leq N : j_1 n_{k_1} - j_2 n_{k_2} = \nu\}.
\]

We say that \((n_k)_{k \geq 1}\) satisfies condition \(D_d\) if there exist real numbers \(\gamma_{j_1,j_2,\nu}\) such that for \(1 \leq j_1, j_2 \leq d\),

\[
\left| \frac{S(j_1, j_2, \nu, N)}{N} - \gamma_{j_1,j_2,\nu} \right| = O\left(\frac{1}{(\log N)^{1+\delta}}\right)
\]

for some \(\delta > 0\), uniformly for \(\nu \in \mathbb{Z}\). We say that \((n_k)_{k \geq 1}\) satisfies condition \(D_d\) if it satisfies \(D_d\) for every \(d \geq 1\).

Let \((n_k)_{k \geq 1}\) be a sequence of positive integers satisfying \(\varphi\) and condition \(D_d\). Let \(p(x)\) be a trigonometric polynomial of the form

\[
p(x) = \sum_{j=1}^{d} a_j \cos 2\pi j x + b_j \sin 2\pi j x.
\]

Set

\[
\sigma^2_p(x) = \|p\|^2 + \sum_{\nu=-\infty}^{\infty} \sum_{j_1,j_2=1}^{d} \frac{\gamma_{j_1,j_2,\nu}}{2} \left((a_{j_1}a_{j_2} + b_{j_1}b_{j_2}) \cos 2\pi \nu x + (b_{j_1}a_{j_2} - a_{j_1}b_{j_2}) \sin 2\pi \nu x \right).
\]

Let \(f(x)\) be a function satisfying

\[
f(x + 1) = f(x), \quad \int_0^1 f(x) \, dx = 0, \quad \text{Var}_{[0,1]} f < \infty,
\]
and write
\[f(x) \sim \sum_{j=1}^{\infty} a_j \cos 2\pi j x + b_j \sin 2\pi j x \]
for the Fourier series of \(f \). For \((n_k)_{k \geq 1}\) satisfying (2) and condition D set
\begin{align*}
\sigma_f^2(x) &= \|f\|^2 + \sum_{\nu=-\infty}^{\infty} \sum_{j_1,j_2=1}^{\infty} \frac{\gamma_{j_1,j_2,\nu}}{2} \left((a_{j_1}a_{j_2} + b_{j_1}b_{j_2}) \cos 2\pi \nu x \\
&\quad + (b_{j_1}a_{j_2} - a_{j_1}b_{j_2}) \sin 2\pi \nu x \right).
\end{align*}

We will prove at the beginning of Section 2 that the limits in (13) and (15) are well defined, provided the sequence \((n_k)_{k \geq 1}\) satisfies (2) and condition \(D_d\) and D, respectively. We emphasize that the functions \(\sigma_p(x)\) and \(\sigma_f(x)\) depend on the numbers \(\gamma_{j_1,j_2,\nu}\) and hence on the sequence \((n_k)_{k \geq 1}\).

Theorem 1. Let \((n_k)_{k \geq 1}\) be a sequence of positive integers satisfying (2) and condition \(D_d\). Then
\begin{equation}
\lim_{N \to \infty} \sup_{N \to \infty} \left\{ \frac{\sum_{k=1}^{N} p(n_kx)}{\sqrt{2N \log \log N}} \right\} = \sigma_p(x) \quad \text{a.e.}
\end{equation}

As a consequence of Theorem 1 we obtain the following result for general functions \(f \).

Theorem 2. Let \((n_k)_{k \geq 1}\) be a sequence of positive integers satisfying (2) and condition \(D_d\), and let \(f(x) \) be a function satisfying (14). Then
\begin{equation}
\lim_{N \to \infty} \sup_{N \to \infty} \left\{ \frac{\sum_{k=1}^{N} f(n_kx)}{\sqrt{2N \log \log N}} \right\} = \sigma_f(x) \quad \text{a.e.}
\end{equation}

The next theorem gives a similar result for the discrepancies \(D_N^*\) and \(D_N\). For \(0 \leq a \leq b \leq 1\) set
\[I_{[a,b)}(x) = \mathbb{1}_{[a,b)}((x)) - (b - a), \]
where \(\mathbb{1}\) denotes the fractional part. For a finite sequence \((x_1, \ldots, x_N)\) of real numbers, the star-discrepancy \(D_N^*\) and the (extremal) discrepancy \(D_N\) of \((x_1, \ldots, x_N)\) are defined as
\begin{align*}
D_N^*(x_1, \ldots, x_N) := \sup_{0 \leq a, b \leq 1} \left| \frac{\sum_{k=1}^{N} I_{[0,a)}(x_k)}{N} \right| \\
D_N(x_1, \ldots, x_N) := \sup_{0 \leq a, b \leq 1} \left| \frac{\sum_{k=1}^{N} I_{[a,b)}(x_k)}{N} \right|.
\end{align*}

If \((x_k)_{k \geq 1}\) is an infinite sequence, we write \(D_N(x_k)\) for \(D_N(x_1, \ldots, x_N)\). For some fixed sequence \((n_k)_{k \geq 1}\) satisfying (2) and condition D we will write \(\sigma_{I_{[a,b)}}(x)\) for the function \(\sigma_f(x)\) with \(f = I_{[a,b)}\), corresponding to (15). For general basic information on discrepancy theory (and the theory of uniform distribution modulo one) we refer the reader to [9] and [18].

Theorem 3. Let \((n_k)_{k \geq 1}\) be a sequence of positive integers satisfying (2) and condition D. Then
\begin{equation}
\lim_{N \to \infty} \frac{N D_N^*(n_kx)}{\sqrt{2N \log \log N}} = \sup_{0 \leq a \leq 1} \sigma_{I_{[a,a)}}(x) \quad \text{a.e.}
\end{equation}
and
\[
\limsup_{N \to \infty} \frac{ND_N(n_kx)}{\sqrt{2N \log \log N}} = \sup_{0 \leq a \leq b \leq 1} \sigma_{I_{[a,b]}}(x) \quad \text{a.e.}
\]

As an application we show that our results are in accordance with the example of Erdős and Fortet \[14\].
Let \(n_k = 2^k - 1 \) and \(p(x) = \cos 2\pi x + \cos 4\pi x \). Calculating the values of \(\gamma_{j_1,j_2,\nu} \), \(1 \leq j_1, j_2 \leq 2 \), \(\nu \in \mathbb{Z} \), for this sequence we get
\[
\gamma_{j_1,j_2,\nu} = \begin{cases}
1 & \text{if } j_1 = 1, j_2 = 2, \nu = 1 \quad \text{or} \quad j_1 = 2, j_2 = 1, \nu = -1, \\
0 & \text{otherwise}.
\end{cases}
\]

Thus we have \(\sigma_p(x)^2 = 1 + \cos 2\pi x \), and hence (16) yields
\[
\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^{N} p(n_kx) \right|}{\sqrt{2N \log \log N}} = \sqrt{1 + \cos 2\pi x} \quad \text{a.e.}
\]
\[
= \sqrt{2} |\cos \pi x| \quad \text{a.e.,}
\]
which is the same as (14).

Remark 1. As in \[4\] we have to assume a bound of the form \(O((\log N)^{-1-\delta}) \) in our Diophantine condition. It is unclear how far this is from optimality. It is possible that the optimal condition is \(o(1) \) (as in the case of the CLT, see \[5\]), but we have doubts that this actually is the case.

Remark 2. Obviously the coefficients \(\gamma_{j_1,j_2,\nu} \) in (11) are symmetric in the sense that
\[
\gamma_{j_1,j_2,\nu} = \gamma_{j_2,j_1,-\nu} \quad \text{for any} \quad j_1, j_2, \nu \in \mathbb{Z}.
\]
Thus (13) and (15) can be rewritten in the form
\[
\sigma_p^2(x) = \|p\|^2 + \sum_{j_1,j_2=1}^{d} \gamma_{j_1,j_2,0}
\]
\[
+ \sum_{\nu=1}^{\infty} \sum_{j_1,j_2=1}^{d} \gamma_{j_1,j_2,\nu} \left((a_{j_1}a_{j_2} + b_{j_1}b_{j_2}) \cos 2\pi \nu x \\
+ (b_{j_1}a_{j_2} - a_{j_1}b_{j_2}) \sin 2\pi \nu x \right)
\]
and
\[
\sigma_f^2(x) = \|f\|^2 + \sum_{j_1,j_2=1}^{\infty} \gamma_{j_1,j_2,0}
\]
\[
+ \sum_{\nu=1}^{\infty} \sum_{j_1,j_2=1}^{\infty} \gamma_{j_1,j_2,\nu} \left((a_{j_1}a_{j_2} + b_{j_1}b_{j_2}) \cos 2\pi \nu x \\
+ (b_{j_1}a_{j_2} - a_{j_1}b_{j_2}) \sin 2\pi \nu x \right),
\]
respectively.

Remark 3. As mentioned before, we do not know of any results for a lacunary sequence \((n_k)_{k \geq 1} \) for which the quotients
\[
\# \{(k_1,k_2), k_1 \neq k_2, 1 \leq k_1, k_2 \leq N : j_1n_{k_1} - j_2n_{k_2} = \nu \}
\]
are not convergent. By the properties of lacunary sequences, these quotients are bounded (as $N \to \infty$), but they can converge to different numbers $\gamma_{j_1, j_2, \nu}$ along different subsequences of N. In this situation it can happen that there exist several limiting functions $\sigma_f^{(m)}(x)$, $1 \leq m \leq M$ along different subsequences, and that
\[
\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} f(n_k x)}{\sqrt{2N \log \log N}} = \max_{1 \leq m \leq M} \sigma_f^{(m)}(x) \quad \text{a.e.,}
\]
but the situation can be even more complicated. It is hardly imaginable that a complete solution of the problem is possible in this general case.

Remark 4. Theorem 3 is a general LIL for the discrepancy of lacunary sequences, which includes several known results. However it can be extremely difficult to calculate the explicit value of the functions on the right-hand side of (17) and (18). For example, it is by no means easy to deduce Fukuyama’s result (8) from (18), i.e. to show that for $n_k = 2^k$, $k \geq 1$ we get $\sup_{0 \leq a \leq 1} \sigma_{I_{[0, a)}}(x) = \sup_{0 \leq a \leq b \leq 1} \sigma_{I_{[a, b)}}(x) = \frac{\sqrt{2}}{9}$ a.e.

2. Preliminaries

In this section we will show that the functions $\sigma_p(x)$ and $\sigma_f(x)$ in (13) and (15) are well defined and bounded. This follows directly from the following lemma.

Lemma 1. Assume that $(n_k)_{k \geq 1}$ satisfies (2) and condition D, and $f(x)$ satisfies (14). Then
\[
\sum_{j_1, j_2 = 1}^{\infty} \sum_{\nu = -\infty}^{\infty} \gamma_{j_1, j_2, \nu} (|a_{j_1} a_{j_2}| + |b_{j_1} b_{j_2}| + |b_{j_1} a_{j_2}| + |a_{j_1} b_{j_2}|) < \infty.
\]

Proof. By assumption we have $\text{Var}_{[0,1]} f < K$ for some number K, which by [22, Vol. I, p. 48] implies
\[
|a_j| \leq K j^{-1}, \quad |b_j| \leq K j^{-1}, \quad j \geq 1.
\]
We will show that for fixed $j_1 \geq 1$ and $r \geq 0$,
\[
\sum_{j_1 q^r \leq j_2 < j_1 q^{r+1}} \sum_{\nu \in \mathbb{Z}} \gamma_{j_1, j_2, \nu} \leq 1.
\]
Together with (19) this would imply
\[
\sum_{1 \leq j_1 \leq j_2 \leq \infty} \sum_{\nu = -\infty}^{\infty} \gamma_{j_1, j_2, \nu} (|a_{j_1} a_{j_2}| + |b_{j_1} b_{j_2}| + |b_{j_1} a_{j_2}| + |a_{j_1} b_{j_2}|) \leq 4K \sum_{j_1 = 1}^{\infty} \sum_{r=0}^{\infty} \sum_{j_2 \leq j_1 q^r} \sum_{\nu = -\infty}^{\infty} \frac{\gamma_{j_1, j_2, \nu}}{j_2} \leq 4K \sum_{j=1}^{\infty} \sum_{r=0}^{\infty} \frac{1}{j^2 q^r} \leq \frac{8Kq}{q-1},
\]
which together with Remark 2 proves the lemma. Thus it remains to show (20).
Now assume that there exist some \(j_1 \geq 1 \) and \(r \geq 0 \) such that
\[
(21) \quad \sum_{j_1 q^r \leq j_2 < j_1 q^{r+1}} \sum_{\nu \in \mathbb{Z}} \gamma_{j_1,j_2,\nu} > 1.
\]
We will show that this leads to a contradiction. If (21) holds, then there has to exist a \textit{finite} set of triplets \((j_1^{(i)}, j_2^{(i)}, \nu^{(i)})\), \(j_1^{(i)} q^r \leq j_2^{(i)} < j_1^{(i)} q^{r+1}, \nu^{(i)} \in \mathbb{Z}, \) such that
\[
\sum_{i} \gamma_{j_1^{(i)}, j_2^{(i)}, \nu^{(i)}} > 1.
\]
Let
\[
A = \bigcup_i \nu^{(i)}.
\]
Then \(A \) is finite. Since by (2) for \(k_1 \neq k_2 \) we have
\[
\frac{n_{k_1}}{n_{k_2}} \notin \left[1/q, q\right],
\]
for sufficiently large \(k_1 \) it is not possible that there exist numbers \(j_1, j_2, j_3, \) satisfying \(j_1^{(i)} q^r \leq j_2, j_3 < j_1^{(i)} q^{r+1} \) and two different indices \(k_2, k_3 \) such that for \(\nu_1, \nu_2 \in A, \)
\[
j_1 n_{k_1} - j_2 n_{k_2} = \nu_1, \quad j_1 n_{k_1} - j_3 n_{k_3} = \nu_2.
\]
But this clearly implies
\[
\sum_{i} \gamma_{j_1^{(i)}, j_2^{(i)}, \nu^{(i)}} \leq 1,
\]
which is in contradiction with (21). This proves the lemma. \(\square \)

3. PROOF OF THEOREM 1

The proof of Theorem 1 is somewhat similar to the proof of the main lemma (Lemma 2.4) of [4]. However, the situation is more difficult in the present case and several adjustments and refinements are necessary.

Let \(\varepsilon > 0 \) be given. For simplicity of writing we consider only the case when \(p(x) \) is an even function, i.e. when \(p \) is of the form
\[
(22) \quad p(x) = \sum_{j=1}^{d} a_j \cos 2\pi j x.
\]
The general case can be treated in exactly the same way; in fact, the only major difference is that in the general case \(p(x) = \sum_{j=1}^{d} a_j \cos 2\pi j x + b_j \sin 2\pi j x, \) the terms with small frequencies in equation (29) are of the form \((a_{j_1} a_{j_2} + b_{j_1} b_{j_2}) \cos 2\pi (j_1 n_{k_1} - j_2 n_{k_2}) x + (b_{j_1} a_{j_2} - a_{j_1} b_{j_2}) \sin 2\pi (j_1 n_{k_1} - j_2 n_{k_2}) x, \) which is in perfect accordance with the definition of \(\sigma \) in (13).

For (22) by (13) we have
\[
\sigma_p = \|p\|^2 + \sum_{\nu = -\infty}^{\infty} \sum_{j_1,j_2=1}^{d} \gamma_{j_1,j_2,\nu} (a_{j_1} a_{j_2}) \cos 2\pi \nu x.
\]
We will assume that \(\|p\| > 0, \) since otherwise the theorem is trivial. We will also assume w.l.o.g. that \(|p|\infty \leq 1 \) and \(|a_j| \leq 1, 1 \leq j \leq d. \) Throughout the rest of the paper \(C \) will denote positive constants, not always the same, depending (at most) on \(p, d \) and \(q, \) but not on \(i, k, N, \) etc.
We divide the set of positive integers into consecutive blocks
\[
\Delta_1', \Delta_2', \Delta_3', \ldots, \Delta_i', \Delta_{i+1}', \ldots
\]
of lengths \([4 \log_q i] + 1\) and \(i\), respectively. More precisely, for any \(i \geq 1\) set
\[
\Delta_i' = \left\{ k : 1 + \sum_{l < i} ([4 \log_q l] + l) \leq k \leq [4 \log_q i] + \sum_{l < i} ([4 \log_q l] + l) \right\}
\]
and
\[
\Delta_i = \left\{ k : 1 + [4 \log_q i] + \sum_{l < i} ([4 \log_q l] + l) \leq k \leq i + [4 \log_q i] + \sum_{l < i} ([4 \log_q l] + l) \right\}.
\]
Furthermore, set
\[
\Delta = \bigcup_{i \geq 1} \Delta_i, \quad \Delta' = \bigcup_{i \geq 1} \Delta_i'.
\]
Then obviously \(\Delta \cup \Delta' = \mathbb{N}\). Letting \(i^-\) and \(i^+\) denote the smallest, resp. largest integer in \(\Delta_i\), we have
\[
\frac{n(i^{-1})}{n(i^{-1}-1)} \leq q^{-4 \log_q i} = i^{-4}, \quad i \geq 2.
\]
For every \(k \in \Delta\), there exists a uniquely defined index \(i\) such that \(k \in \Delta_i\). For every \(k \in \Delta\), let \(i = i(k)\) denote this index. Put \(m(k) = [\log_2 n_k + 2 \log_2 i]\) and approximate \(p(n_k x)\) by a discrete function \(\varphi_k(x)\) such that the following properties are satisfied:

(P1) \(\varphi_k(x)\) is \(\mathcal{G}_i\)-measurable,
(P2) \(\|\varphi_k(x) - p(n_k x)\|_\infty \leq C i^{-2}\),
(P3) \(\mathbb{E}(\varphi_k(x)|\mathcal{G}_{i-1}) = 0\).

Here \(\mathcal{G}_i\) denotes the \(\sigma\)-field generated by the intervals \([v 2^{-m(i^+)}, (v+1) 2^{-m(i^+)}]\), \(0 \leq v < 2^{m(i^+)}\). The existence of such functions \(\varphi_k(x)\) is explained in detail in the proof of [4, Lemma 2.4].

For \(i \geq 1\), \(k \in \Delta_i\) we define
\[
\eta_k = \varepsilon i^{-1/2} \sgn \left(\cos 4\pi 2^m(i^+) x \right), \quad \psi_k(x) = \varphi_k(x) + \eta_k(x),
\]
and let \(\mathcal{F}_i\) denote the \(\sigma\)-field generated by the intervals \([v 2^{-m(i^+)-1}, (v+1) 2^{-m(i^+)-1})\), \(0 \leq v < 2^{m(i^+)+1}\). For notational convenience we also set \(\eta_k \equiv 0\) for \(k \in \Delta_i'\). Then (P1), (P2) and (P3) imply:

(P1*) \(\psi_k(x)\) is \(\mathcal{F}_i\)-measurable,
(P2*) \(\|\psi_k(x) - p(n_k x)\|_\infty \leq \varepsilon + C i^{-2}\),
(P3*) \(\mathbb{E}(\psi_k(x)|\mathcal{F}_{i-1}) = 0\).

We set
\[
Y_i = \sum_{k \in \Delta_i} \psi_k(x), \quad T_i = \sum_{k \in \Delta_i} p(n_k x), \quad T'_i = \sum_{k \in \Delta_i'} p(n_k x), \quad V_M = \sum_{i=1}^{M} \mathbb{E}(Y_i^2|\mathcal{F}_{i-1}).
Then \((Y_i, \mathcal{F}_i, i \geq 1)\) is a martingale difference sequence. The reason for using the functions \(\psi_k\) instead of \(\varphi_k\) (which was not necessary in [4]) is to guarantee that \(V_M\) is “not too small”. In fact, it is easily seen that (23) implies

\[
V_M \geq \sum_{k=1}^{M} \left(\frac{\varepsilon^{1/2}}{2} \right)^2 \geq \frac{\varepsilon^2 M(M-1)}{2}, \quad M \geq 1.
\]

By [7, Lemma 2.2], Minkowski’s inequality and (P2*),

\[
\mathbb{E} Y_M^4 \leq C |\Delta_M|^2 \leq CM^2,
\]

where \(|\Delta_M|\) denotes the number of elements of \(\Delta_M\). Thus by (24) and the trivial estimate

\[
V_M \leq \sum_{i=1}^{M} |Y_i|^2 \leq C \sum_{i=1}^{M} |\Delta_i|^2 \leq CM^3
\]

we obtain

\[
\sum_{M=1}^{\infty} \frac{(\log V_M)^{10}}{V_M^2} \mathbb{E} Y_M^4 \leq \sum_{M=1}^{\infty} C \frac{(\log M)^{10}}{M^2} < +\infty.
\]

Hence by [1, Lemma 11],

\[
\limsup_{M \to \infty} \frac{\sum_{i=1}^{M} Y_i}{\sqrt{2V_M \log \log V_M}} = 1 \text{ a.e.},
\]

which can be rewritten as

\[
\limsup_{M \to \infty} \frac{\sum_{1 \leq k \leq M+, k \in \Delta} (\varphi_k + \eta_k)}{\sqrt{2V_M \log \log V_M}} = 1 \text{ a.e.}
\]

We add the sum of the “short blocks” \(T_i\), for which by [20, Theorem 1] and Koksma’s inequality (see [18, p. 143]),

\[
\sum_{i=1}^{M} T_i = O \left(\sqrt{M(\log M) \log \log (M \log M)} \right) \text{ a.e.},
\]

change from \(\varphi_k\) to \(p(n_kx)\), which is possible by (P2), and get

\[
\limsup_{M \to \infty} \frac{\sum_{k=1}^{M} (p(n_kx) + \eta_k)}{\sqrt{2V_M \log \log V_M}} = 1 \text{ a.e.}
\]

Since

\[
\sum_{k \in \Delta_i \cup \Delta_i'} |(p(n_kx) + \eta_k)| \leq C (|\Delta_i| + |\Delta_i'|) \leq Ci
\]

it follows by (24) that

\[
\limsup_{M \to \infty} \frac{\max_{(M-1)+<N\leq M+} \sum_{k=1}^{N} (p(n_kx) + \eta_k)}{\sqrt{2V_M \log \log V_M}} = 1 \text{ a.e.}
\]

For \(N \geq 1\) we define \(M(N)\) as the index \(m\), for which \(N\) is contained in \(\Delta_m \cup \Delta'_m\). Then

\[
(25) \quad \limsup_{N \to \infty} \frac{\sum_{k=1}^{N} (p(n_kx) + \eta_k)}{\sqrt{2V_{M(N)} \log \log V_{M(N)}}} = 1 \text{ a.e.}
\]
Finally, we want to replace \(V_{M(N)} \) by \(N\sigma_p(x) \). We choose a positive number \(A \) such that

\[
(26) \quad \sum_{j_1,j_2=1 \atop |\nu| \geq A}^d \gamma_{j_1,j_2,\nu} \leq \varepsilon,
\]

which is always possible by Lemma \(\Pi \). Set

\[
\sigma_{p,A}^2(x) = \|p\|^2 + \sum_{j_1,j_2=1 \atop |\nu| > A}^d \frac{\gamma_{j_1,j_2,\nu}}{2} a_{j_1} a_{j_2} \cos 2\pi \nu x.
\]

Then by \((26) \),

\[
(27) \quad |\sigma_{p,A}(x)^2 - \sigma_p(x)^2| = \sum_{j_1,j_2=1 \atop |\nu| > A}^d \frac{\gamma_{j_1,j_2,\nu}}{2} a_{j_1} a_{j_2} \cos 2\pi \nu x \leq \varepsilon.
\]

We have

\[
(28) \quad T_i(x)^2 - \|p\|^2 |\Delta_i| = \left(\sum_{k \in \Delta_i} p(n_k x) \right)^2 - \|p\|^2 |\Delta_i|
\]

\[
= \left(\sum_{k \in \Delta_i} \sum_{j=1}^d a_j \cos 2\pi j n_k x \right)^2 - \left(\frac{1}{2} \sum_{i=1}^d a_i^2 \right)^2 |\Delta_i|
\]

\[
= \sum_{1 \leq j_1, j_2 \leq d, k_1, k_2 \in \Delta_i, (j_1,k_1) \neq (j_2,k_2), \atop 0 \leq |j_1 n_{k_1} - j_2 n_{k_2}| \leq A} \frac{1}{2} a_{j_1} a_{j_2} \cos 2\pi (j_1 n_{k_1} - j_2 n_{k_2}) x
\]

\[
+ \sum_{1 \leq j_1, j_2 \leq d, k_1, k_2 \in \Delta_i, \atop A < |j_1 n_{k_1} - j_2 n_{k_2}| \leq n(i_{-1}) +} \frac{1}{2} a_{j_1} a_{j_2} \cos 2\pi (j_1 n_{k_1} - j_2 n_{k_2}) x
\]

\[
+ \sum_{1 \leq j_1, j_2 \leq d, k_1, k_2 \in \Delta_i, \atop n(i_{-1}) + < |j_1 n_{k_1} - j_2 n_{k_2}| < n_{i_-}} \frac{1}{2} a_{j_1} a_{j_2} \cos 2\pi (j_1 n_{k_1} - j_2 n_{k_2}) x
\]

\[
(29) \quad =: A_i(x) + U_i(x) + W_i(x) + R_i(x),
\]

where the sum \(\sum_{\pm} \) in \((28) \) should be understood as a sum over both possible choices of the signs “+” and “−” in the second sum in \((28) \) (note that for the sign “+” we always have \(n_{i_-} \leq j_1 n_{k_1} + j_2 n_{k_2} \), and thus \(R_i \) contains all frequencies of the form \(j_1 n_{k_1} + j_2 n_{k_2} \)).

As in the proof of \([4] \) Lemma 2.4] we can show

\[
(30) \quad \left| \sum_{i=1}^M E(R_i|F_{i-1}) \right| \leq CM
\]
and
\[
\left\| \sum_{i=1}^{M} \mathbb{E}(W_i | \mathcal{F}_{i-1}) \right\| \leq CM^{3/2}.
\]

By the Diophantine condition \(D_d \) we have, for \(1 \leq j_1, j_2 \leq d \),
\[
|S(j_1, j_2, \nu, N) - \gamma_{j_1, j_2, \nu} N| \leq C (\log N)^{-1-\delta} N,
\]
where \(S \) is defined in (10). We note that \(U_i \) is a sum of trigonometric functions with frequencies at most \(n_{(i-1)^+} \), i.e.
\[
U_i = \sum_{\nu=0}^{n_{(i-1)^+}} c_{\nu} \cos 2\pi \nu x,
\]
where \(\sum_{\nu} |c_{\nu}| \leq C |\Delta_i| \). Hence the fluctuation of \(U_i \) on any atom of \(\mathcal{F}_{i-1} \) is at most
\[
\sum_{\nu=0}^{n_{(i-1)^+}} |c_{\nu}| 2\pi \nu 2^{-m((i-1)^+) - 1} \leq C i \frac{n_{(i-1)^+}}{\nu^2 n_{(i-1)^+}} \leq C i^{-1},
\]
and consequently
\[
|\mathbb{E}(U_i | \mathcal{F}_{i-1}) - U_i| \leq C i^{-1},
\]
which gives
\[
\left| \sum_{i=1}^{M} U_i(x) - \sum_{i=1}^{M} \mathbb{E}(U_i | \mathcal{F}_{i-1}) \right| \leq C \log M.
\]

By (32) we can decompose
\[
\sum_{i=1}^{M} U_i(x) = \left[\sum_{\nu=A+1}^{n_{(M-1)^+}} d_{\nu} \cos 2\pi \nu x + \sum_{\nu=A+1}^{n_{(M-1)^+}} e_{\nu} \cos 2\pi \nu x, \right. \]
\[
\left. =: U^{(1)}_M \right] + \left. U^{(2)}_M \right]
\]
where
\[
|d_{\nu}| \leq \sum_{1 \leq j_1, j_2 \leq d} \sum_{|\nu| \geq A} \gamma_{j_1, j_2, \nu} M^2
\]
and
\[
|e_{\nu}| \leq C (\log M)^{-1-\delta} M^2, \quad \sum_{\nu} |e_{\nu}| \leq CM^2.
\]

Then by (26),
\[
\left| U^{(1)}_M \right| \leq \epsilon M^2
\]
and by (34),
\[
\left\| U^{(2)}_M \right\| \leq \left(\sum_{\nu} |e_{\nu}|^2 \right)^{1/2} \leq C (\log M)^{-1/2-\delta/2} M^2.
\]

In the same way as (33) we can also show
\[
\left| \sum_{i=1}^{M} A_i(x) - \sum_{i=1}^{M} \mathbb{E}(A_i | \mathcal{F}_{i-1}) \right| \leq C \log M.
\]

It is easy to see that for \(1 \leq j_1, j_2 \leq d \) and for all \(\nu, |\nu| \leq A \),
i.e. that the contribution of the indices in Δ' is negligible. Using this observation we obtain

$$
(37) \quad \left\| M^+ \sigma^2_{p,A} - \sum_{i=1}^{M} A_i(x) \right\| \leq C (\log M)^{-1/2 - \delta/2}.
$$

We choose an $\alpha > 0$ such that

$$
(38) \quad \left(1 + \frac{\delta}{2}\right)^{-1} < \alpha < \left(1 + \frac{\delta}{4}\right)^{-1}
$$

and define numbers

$$
M_l = \left\lfloor 2^{(l^\alpha)} \right\rfloor, \quad l \geq 0,
$$

and sets

$$
S_l = \bigcup_{M_l \leq M \leq M_{l+1}} \{ x \in (0, 1) : |V_M - M^+ \sigma^2_p| > 2C^* \varepsilon M^2 \}, \quad l \geq 0,
$$

where C^* (which denotes a positive constant) will be chosen later. We also define

$$
S_l^* = \{ x \in (0, 1) : |V_{M_l} - M^+_l \sigma^2_p | > C^* \varepsilon M_l^2 \}, \quad l \geq 0.
$$

Since $\alpha < 1$ and since V_M and $M^+ \sigma^2_p$ grow at most polynomially in M, for all sufficiently large l,

$$
(39) \quad S_l \subset S_l^*.
$$

By Hölder’s inequality and (P2),

$$
\begin{align}
&\left| V_M - \mathbb{E} \left(\sum_{k=1}^{M} T^2_i |F_{i-1} \right) \right| \\
\leq & \quad 2 \mathbb{E} \left(\sum_{i=1}^{M} T^2_i \left(\sum_{k \in \Delta_i} \varphi_k - p(n_k x) + \eta_k \right) |F_{i-1} \right) \\
&+ \mathbb{E} \left(\sum_{i=1}^{M} \left(\sum_{k \in \Delta_i} \varphi_k - p(n_k x) + \eta_k \right)^2 |F_{i-1} \right) \\
\leq & \quad 2 \left(\mathbb{E} \left(\sum_{i=1}^{M} T^2_i |F_{i-1} \right) \right)^{1/2} \mathbb{E} \left(\sum_{i=1}^{M} \left(\sum_{k \in \Delta_i} \varphi_k - p(n_k x) + \eta_k \right)^2 |F_{i-1} \right)^{1/2} \\
\leq & \quad CM \left(\mathbb{E} \left(\sum_{i=1}^{M} T^2_i |F_{i-1} \right) \right)^{1/2} \mathbb{E} \left(\sum_{i=1}^{M} \left(\sum_{k \in \Delta_i} \varphi_k - p(n_k x) + \eta_k \right)^2 |F_{i-1} \right)^{1/2} \\
+ & \quad C \varepsilon^2 M^2 \\
\leq & \quad C \varepsilon M^2.
\end{align}
$$
Using the decomposition
\[
\sum_{i=1}^{\infty} T_i^2 = \|p\|^2 \sum_{i=1}^{M} |\Delta_i| + \sum_{i=1}^{M} A_i + \sum_{i=1}^{M} U_M^{(1)} + U_M^{(2)} + \sum_{i=1}^{M} W_i + \sum_{i=1}^{M} R_i
\]
we have, using (27), (30), (31), (33), and (36),
\[
\left| V_M - M^+ \sigma_{p,A}^2 \right| \leq \left\{ \begin{array}{ll}
\|p\|^2 \left(M^+ - \sum_{i=1}^{M} |\Delta_i| \right) & + \left(M^+ |\sigma_{p,A}^2 - \sigma_p^2| \right) + \left| M^+ \sigma_{p,A}^2 - \sum_{i=1}^{M} A_i \right| \\
\leq C \varepsilon M \log M
\end{array} \right.
\]
\[
+ \left| \sum_{i=1}^{M} A_i - \sum_{i=1}^{M} \mathbb{E} (A_i | F_{i-1}) \right| + \left| \sum_{i=1}^{M} U_i - \sum_{i=1}^{M} \mathbb{E} (U_i | F_{i-1}) \right| + \varepsilon M^2
\]
\[
\leq C \log M + C M^{3/2} + \sum_{i=1}^{M} \mathbb{E} (R_i | F_{i-1}) \leq CM,
\]
(41) \leq \left| M^+ \sigma_{p,A}^2 - \sum_{i=1}^{M} A_i \right| + \left| U_M^{(2)} \right| + C \varepsilon M^2.

We choose a constant \(C^* \) for which \(C^* > C + 2 \), where \(C \) is the constant in (41). Then, by Chebyshev’s inequality along with (35) and (37),
\[
\mathbb{P} \left(\left| M^+ \sigma_{p,A}^2 - \sum_{i=1}^{M} A_i \right| + \varepsilon M^2 \right) \leq C \varepsilon^{-2} (\log M)^{-1-\delta}
\]
and
\[
\mathbb{P} \left(\left| U_M^{(2)} \right| \right) \leq C \varepsilon^{-2} (\log M)^{-1-\delta},
\]
we obtain
\[
\mathbb{P} \left(\left| V_M - M^+ \sigma_{p,A}^2 \right| > C^* \varepsilon M^2 \right)
\leq \mathbb{P} \left(\left| M^+ \sigma_{p,A}^2 - \sum_{i=1}^{M} A_i \right| + \varepsilon M^2 \right) + \mathbb{P} \left(\left| U_M^{(2)} \right| \right)
\leq C \varepsilon^{-2} (\log M)^{-1-\delta}.
\]
Thus
\[
\mathbb{P}(S^*_l) \leq C l^{-\alpha(1+\delta)}
\]
and by (88)
\[
\sum_{l=1}^{\infty} \mathbb{P}(S_l) < +\infty.
\]
Thus the Borel-Cantelli lemma implies that the set of those \(x \in (0, 1) \), which are contained in infinitely many sets \(S_l^*, l \geq 1 \), has Lebesgue measure 0, and by \cite{39} the set of those \(x \) which are contained in infinitely many sets \(S_l, l \geq 1 \), also has measure zero. This implies

\[
|V_M - M^+\sigma_p^2| \leq 2C^*\varepsilon M^2
\]

for sufficiently large \(M \) for a.e. \(x \). Together with (25) this implies

\[
\sigma_p - \sqrt{2C^*\varepsilon} \leq \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N (p(n_kx) + \eta_k) \right|}{\sqrt{2N\log\log N}} \leq \sigma_p + \sqrt{2C^*\varepsilon} \quad \text{a.e.}
\]

Since the functions \(\eta_{k_1} \) and \(\eta_{k_2} \) are independent for \(k_1 \in \Delta_{i_1}, k_2 \in \Delta_{i_2}, i_1 \neq i_2 \) (similar to the Rademacher function system), by Kolmogorov’s law of the iterated logarithm

\[
\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N \eta_k \right|}{\sqrt{2N\log\log N}} = \varepsilon \quad \text{a.e.,}
\]

which implies

\[
\sigma_p - \sqrt{2C^*\varepsilon} - \varepsilon \leq \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N (p(n_kx)) \right|}{\sqrt{2N\log\log N}} \leq \sigma_p + \sqrt{2C^*\varepsilon} + \varepsilon \quad \text{a.e.}
\]

Since \(\varepsilon \) was arbitrary, this proves Theorem 1.

4. Proof of Theorems 2 and 3

Again we assume for simplicity of writing that \(f \) is an even function. Let \(f(x) = p(x) + r(x) \), where

\[
f(x) \sim \sum_{j=1}^\infty a_j \cos 2\pi jx, \quad p(x) = \sum_{j=1}^d a_j \cos 2\pi jx, \quad r(x) = \sum_{j=d+1}^\infty a_j \cos 2\pi jx
\]

for some \(d \). We clearly have

\[
\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N f(n_kx) \right|}{\sqrt{2N\log\log N}} \leq \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N p(n_kx) \right|}{\sqrt{2N\log\log N}} + \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N r(n_kx) \right|}{\sqrt{2N\log\log N}}.
\]

Similarly, we also have

\[
\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N r(n_kx) \right|}{\sqrt{2N\log\log N}} \leq \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N p(n_kx) \right|}{\sqrt{2N\log\log N}} - \limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N r(n_kx) \right|}{\sqrt{2N\log\log N}}.
\]

By (19) and \cite{4} Lemma 3.1,

\[
\limsup_{N \to \infty} \frac{\left| \sum_{k=1}^N r(n_kx) \right|}{\sqrt{2N\log\log N}} \leq C d^{-1/4} \quad \text{a.e.,}
\]
for some constant C, and by Theorem 1
\[\limsup_{N \to \infty} \frac{\sum_{k=1}^{N} p(n_k x)}{\sqrt{2N \log \log N}} = \sigma_p \quad \text{a.e.} \]
Thus, by (42) and (43),
\[\sigma_p - Cd^{-1/4} \leq \limsup_{N \to \infty} \frac{\sum_{k=1}^{N} f(n_k x)}{\sqrt{2N \log \log N}} \leq \sigma_p + Cd^{-1/4} \quad \text{a.e.} \]
By Lemma 11 we have
\[\sigma_p \to \sigma_f \quad \text{as} \quad d \to \infty, \]
which proves Theorem 2. Theorem 3 follows directly from Theorem 2 and [13, Theorem 1].

REFERENCES

Institute of Mathematics A, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria

E-mail address: aistleitner@math.tugraz.at