Gaussian subordination for the Beurling-Selberg extremal problem
Authors:
Emanuel Carneiro, Friedrich Littmann and Jeffrey D. Vaaler
Journal:
Trans. Amer. Math. Soc. 365 (2013), 3493-3534
MSC (2010):
Primary 41A30, 41A52; Secondary 41A05, 41A44, 42A82
DOI:
https://doi.org/10.1090/S0002-9947-2013-05716-9
Published electronically:
February 21, 2013
MathSciNet review:
3042593
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We determine extremal entire functions for the problem of majorizing, minorizing, and approximating the Gaussian function by entire functions of exponential type. This leads to the solution of analogous extremal problems for a wide class of even functions that includes most of the previously known examples, plus a variety of new interesting functions such as
for
;
, for
;
; and
, for
. Further applications to number theory include optimal approximations of theta functions by trigonometric polynomials and optimal bounds for certain Hilbert-type inequalities related to the discrete Hardy-Littlewood-Sobolev inequality in dimension one.
- 1. Jeffrey T. Barton, Hugh L. Montgomery, and Jeffrey D. Vaaler, Note on a Diophantine inequality in several variables, Proc. Amer. Math. Soc. 129 (2001), no. 2, 337–345. MR 1800228, https://doi.org/10.1090/S0002-9939-00-05795-6
- 2. Emanuel Carneiro, Sharp approximations to the Bernoulli periodic functions by trigonometric polynomials, J. Approx. Theory 154 (2008), no. 2, 90–104. MR 2474766, https://doi.org/10.1016/j.jat.2008.03.007
- 3. Emanuel Carneiro and Jeffrey D. Vaaler, Some extremal functions in Fourier analysis. II, Trans. Amer. Math. Soc. 362 (2010), no. 11, 5803–5843. MR 2661497, https://doi.org/10.1090/S0002-9947-2010-04886-X
- 4. Emanuel Carneiro and Jeffrey D. Vaaler, Some extremal functions in Fourier analysis. III, Constr. Approx. 31 (2010), no. 2, 259–288. MR 2581230, https://doi.org/10.1007/s00365-009-9050-6
- 5. Emanuel Carneiro and Vorrapan Chandee, Bounding 𝜁(𝑠) in the critical strip, J. Number Theory 131 (2011), no. 3, 363–384. MR 2739041, https://doi.org/10.1016/j.jnt.2010.08.002
- 6. Vorrapan Chandee and K. Soundararajan, Bounding |𝜁(\frac12+𝑖𝑡)| on the Riemann hypothesis, Bull. Lond. Math. Soc. 43 (2011), no. 2, 243–250. MR 2781205, https://doi.org/10.1112/blms/bdq095
- 7. K. Chandrasekharan, Elliptic functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 281, Springer-Verlag, Berlin, 1985. MR 808396
- 8. Tord Ganelius, On one-sided approximation by trigonometrical polynomials, Math. Scand. 4 (1956), 247–258. MR 88596, https://doi.org/10.7146/math.scand.a-10473
- 9. M. I. Ganzburg, Criteria for best approximation of locally integrable functions in 𝐿(𝑅), Studies in current problems of summation and approximation of functions and their applications, Dnepropetrovsk. Gos. Univ., Dnepropetrovsk, 1983, pp. 11–16 (Russian). MR 750116
- 10. Michael I. Ganzburg, Limit theorems and best constants in approximation theory, Handbook of analytic-computational methods in applied mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2000, pp. 507–569. MR 1769932
- 11. Michael I. Ganzburg, 𝐿-approximation to non-periodic functions, J. Concr. Appl. Math. 8 (2010), no. 2, 208–215. MR 2606258
- 12. M. I. Ganzburg and D. S. Lubinsky, Best approximating entire functions to |𝑥|^{𝛼} in 𝐿₂, Complex analysis and dynamical systems III, Contemp. Math., vol. 455, Amer. Math. Soc., Providence, RI, 2008, pp. 93–107. MR 2408163, https://doi.org/10.1090/conm/455/08849
- 13. Loukas Grafakos, Classical and modern Fourier analysis, Pearson Education, Inc., Upper Saddle River, NJ, 2004. MR 2449250
- 14. S. W. Graham and Jeffrey D. Vaaler, A class of extremal functions for the Fourier transform, Trans. Amer. Math. Soc. 265 (1981), no. 1, 283–302. MR 607121, https://doi.org/10.1090/S0002-9947-1981-0607121-1
- 15. S. W. Graham and Jeffrey D. Vaaler, Extremal functions for the Fourier transform and the large sieve, Topics in classical number theory, Vol. I, II (Budapest, 1981) Colloq. Math. Soc. János Bolyai, vol. 34, North-Holland, Amsterdam, 1984, pp. 599–615. MR 781154
- 16. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- 17. Jeffrey J. Holt and Jeffrey D. Vaaler, The Beurling-Selberg extremal functions for a ball in Euclidean space, Duke Math. J. 83 (1996), no. 1, 202–248. MR 1388849, https://doi.org/10.1215/S0012-7094-96-08309-X
- 18. Lars Hörmander, Linear partial differential operators, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969. MR 0248435
- 19.
M. G. Krein,
On the best approximation of continuously differentiable functions on the whole real axis,
Dokl. Akad. Nauk SSSR, 18 (1938), 615-624 (Russian). - 20. Xian-Jin Li and Jeffrey D. Vaaler, Some trigonometric extremal functions and the Erdős-Turán type inequalities, Indiana Univ. Math. J. 48 (1999), no. 1, 183–236. MR 1722198, https://doi.org/10.1512/iumj.1999.48.1508
- 21. Friedrich Littmann, One-sided approximation by entire functions, J. Approx. Theory 141 (2006), no. 1, 1–7. MR 2246686, https://doi.org/10.1016/j.jat.2005.12.003
- 22. Friedrich Littmann, Entire majorants via Euler-Maclaurin summation, Trans. Amer. Math. Soc. 358 (2006), no. 7, 2821–2836. MR 2216247, https://doi.org/10.1090/S0002-9947-06-04121-3
- 23. Friedrich Littmann, Entire approximations to the truncated powers, Constr. Approx. 22 (2005), no. 2, 273–295. MR 2148534, https://doi.org/10.1007/s00365-004-0586-1
- 24. Hugh L. Montgomery, The analytic principle of the large sieve, Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MR 466048, https://doi.org/10.1090/S0002-9904-1978-14497-8
- 25. H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73–82. MR 337775, https://doi.org/10.1112/jlms/s2-8.1.73
- 26.
B. Sz.-Nagy,
Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen II,
Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig 91 (1939). - 27. I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), no. 4, 811–841. MR 1503439, https://doi.org/10.2307/1968466
- 28. Atle Selberg, Remarks on sieves, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 205–216. MR 0389802
- 29. Atle Selberg, Collected papers. Vol. II, Springer-Verlag, Berlin, 1991. With a foreword by K. Chandrasekharan. MR 1295844
- 30. Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- 31. Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
- 32. Harold S. Shapiro, Topics in approximation theory, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg; Lecture Notes in Math., Vol. 187. MR 0437981
- 33. Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966 (French). MR 0209834
- 34. E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
- 35. Jeffrey D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 183–216. MR 776471, https://doi.org/10.1090/S0273-0979-1985-15349-2
- 36. Jeffrey D. Vaaler, Refinements of the Erdős-Turán inequality, Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991) Lecture Notes in Pure and Appl. Math., vol. 147, Dekker, New York, 1993, pp. 263–269. MR 1219340
- 37. A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 41A30, 41A52, 41A05, 41A44, 42A82
Retrieve articles in all journals with MSC (2010): 41A30, 41A52, 41A05, 41A44, 42A82
Additional Information
Emanuel Carneiro
Affiliation:
IMPA–Instituto de Matematica Pura e Aplicada–Estrada Dona Castorina, 110, Rio de Janeiro, 22460-320, Brazil
Email:
carneiro@impa.br
Friedrich Littmann
Affiliation:
Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105-5075
Email:
friedrich.littmann@ndsu.edu
Jeffrey D. Vaaler
Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712-1082
Email:
vaaler@math.utexas.edu
DOI:
https://doi.org/10.1090/S0002-9947-2013-05716-9
Keywords:
Gaussian,
exponential type,
extremal functions,
majorization,
tempered distributions.
Received by editor(s):
February 1, 2010
Received by editor(s) in revised form:
July 12, 2011
Published electronically:
February 21, 2013
Article copyright:
© Copyright 2013
American Mathematical Society