## On quandle homology groups of Alexander quandles of prime order

HTML articles powered by AMS MathViewer

- by Takefumi Nosaka PDF
- Trans. Amer. Math. Soc.
**365**(2013), 3413-3436 Request permission

## Abstract:

In this paper we determine the integral quandle homology groups of Alexander quandles of prime order. As a special case, this settles the*delayed Fibonacci conjecture*by M. Niebrzydowski and J. H. Przytycki from their 2009 paper. Further, we determine the cohomology group of the Alexander quandle and obtain relatively simple presentations of all higher degree cocycles which generate the cohomology group. Finally, we prove that the integral quandle homology of a finite connected Alexander quandle is annihilated by the order of the quandle.

## References

- Soichiro Asami and Shin Satoh,
*An infinite family of non-invertible surfaces in 4-space*, Bull. London Math. Soc.**37**(2005), no. 2, 285–296. MR**2119028**, DOI 10.1112/S0024609304003832 - J. Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, and Masahico Saito,
*Quandle cohomology and state-sum invariants of knotted curves and surfaces*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 3947–3989. MR**1990571**, DOI 10.1090/S0002-9947-03-03046-0 - J. Scott Carter, Seiichi Kamada, and Masahico Saito,
*Geometric interpretations of quandle homology*, J. Knot Theory Ramifications**10**(2001), no. 3, 345–386. MR**1825963**, DOI 10.1142/S0218216501000901 - F. J.-B. J. Clauwens,
*The algebra of rack and quandle cohomology*, arXiv:math/1004. 4423. - Pavel Etingof, Alexander Soloviev, and Robert Guralnick,
*Indecomposable set-theoretical solutions to the quantum Yang-Baxter equation on a set with a prime number of elements*, J. Algebra**242**(2001), no. 2, 709–719. MR**1848966**, DOI 10.1006/jabr.2001.8842 - Roger Fenn, Colin Rourke, and Brian Sanderson,
*Trunks and classifying spaces*, Appl. Categ. Structures**3**(1995), no. 4, 321–356. MR**1364012**, DOI 10.1007/BF00872903 - R. A. Litherland and Sam Nelson,
*The Betti numbers of some finite racks*, J. Pure Appl. Algebra**178**(2003), no. 2, 187–202. MR**1952425**, DOI 10.1016/S0022-4049(02)00211-6 - Takuro Mochizuki,
*Some calculations of cohomology groups of finite Alexander quandles*, J. Pure Appl. Algebra**179**(2003), no. 3, 287–330. MR**1960136**, DOI 10.1016/S0022-4049(02)00323-7 - Takuro Mochizuki,
*The 3-cocycles of the Alexander quandles $\Bbb F_q[T]/(T-\omega )$*, Algebr. Geom. Topol.**5**(2005), 183–205. MR**2135551**, DOI 10.2140/agt.2005.5.183 - T. Nosaka,
*Quandle homotopy invariants of knotted surfaces*, arXiv:math/1011. 6035. - M. Niebrzydowski and J. H. Przytycki,
*Homology of dihedral quandles*, J. Pure Appl. Algebra**213**(2009), no. 5, 742–755. MR**2494367**, DOI 10.1016/j.jpaa.2008.09.010 - T. Ohtsuki,
*Problems on invariants of knots and 3-manifolds*, Invariants of knots and 3-manifolds (Kyoto, 2001) Geom. Topol. Monogr., vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. i–iv, 377–572. With an introduction by J. Roberts. MR**2065029**, DOI 10.2140/gtm.2002.4

## Additional Information

**Takefumi Nosaka**- Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
- Email: nosaka@kurims.kyoto-u.ac.jp
- Received by editor(s): November 17, 2009
- Received by editor(s) in revised form: April 1, 2011
- Published electronically: January 30, 2013
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**365**(2013), 3413-3436 - MSC (2010): Primary 20G10, 55N35, 58H10; Secondary 57Q45, 57M25, 55S20
- DOI: https://doi.org/10.1090/S0002-9947-2013-05754-6
- MathSciNet review: 3042590