Theta-duality on Prym varieties and a Torelli theorem
HTML articles powered by AMS MathViewer
- by Martí Lahoz and Juan Carlos Naranjo PDF
- Trans. Amer. Math. Soc. 365 (2013), 5051-5069 Request permission
Abstract:
Let $\pi : \widetilde C \to C$ be an unramified double covering of irreducible smooth curves and let $P$ be the attached Prym variety. We prove the scheme-theoretic theta-dual equalities in the Prym variety $T(\widetilde C)=V^2$ and $T(V^2)=\widetilde C$, where $V^2$ is the Brill-Noether locus of $P$ associated to $\pi$ considered by Welters. As an application we prove a Torelli theorem analogous to the fact that the symmetric product $D^{(g)}$ of a curve $D$ of genus $g$ determines the curve.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Arnaud Beauville, Les singularités du diviseur $\Theta$ de la jacobienne intermédiaire de l’hypersurface cubique dans $\textbf {P}^{4}$, Algebraic threefolds (Varenna, 1981) Lecture Notes in Math., vol. 947, Springer, Berlin-New York, 1982, pp. 190–208 (French). MR 672617
- Arnaud Beauville, Sous-variétés spéciales des variétés de Prym, Compositio Math. 45 (1982), no. 3, 357–383 (French). MR 656611
- S. Casalaina Martin, M. Lahoz, and F. Viviani, Cohomological support loci for Abel-Prym curves, Matematiche (Catania) 63 (2008), no. 1, 205–222. MR 2512518
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- Olivier Debarre, Sur les variétés de Prym des courbes tétragonales, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 545–559 (French). MR 982333
- Olivier Debarre, Théorèmes de Lefschetz pour les lieux de dégénérescence, Bull. Soc. Math. France 128 (2000), no. 2, 283–308 (French, with English and French summaries). MR 1772444
- Ron Donagi, The tetragonal construction, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 181–185. MR 598683, DOI 10.1090/S0273-0979-1981-14875-8
- Corrado De Concini and Piotr Pragacz, On the class of Brill-Noether loci for Prym varieties, Math. Ann. 302 (1995), no. 4, 687–697. MR 1343645, DOI 10.1007/BF01444512
- E. Graham Evans and Phillip Griffith, The syzygy problem, Ann. of Math. (2) 114 (1981), no. 2, 323–333. MR 632842, DOI 10.2307/1971296
- M.G. Gulbrandsen, M. Lahoz, Finite subschemes of abelian varieties and the Schottky problem, arXiv:1004.1495. To appear in Ann. Inst. Fourier (Grenoble).
- Andreas Höring, $M$-regularity of the Fano surface, C. R. Math. Acad. Sci. Paris 344 (2007), no. 11, 691–696 (English, with English and French summaries). MR 2334677, DOI 10.1016/j.crma.2007.04.008
- A. Höring, Geometry of Brill-Noether loci on Prym varieties, Preprint 2011. arXiv:1103.1053.
- D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006. MR 2244106, DOI 10.1093/acprof:oso/9780199296866.001.0001
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- E. Izadi, The geometric structure of ${\scr A}_4$, the structure of the Prym map, double solids and $\Gamma _{00}$-divisors, J. Reine Angew. Math. 462 (1995), 93–158. MR 1329904, DOI 10.1515/crll.1995.462.93
- E. Izadi, H. Lange, Counter-examples of high Clifford index to Prym-Torelli. Preprint 2010. arXiv:1001.3610.
- M. Lahoz, Theta-duality in Abelian Varieties and the Bicanonical Map of Irregular Varieties, Ph.D. Thesis, Universitat Politècnica de Catalunya, May 2010.
- David Mumford, Theta characteristics of an algebraic curve, Ann. Sci. École Norm. Sup. (4) 4 (1971), 181–192. MR 292836
- David Mumford, Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 325–350. MR 0379510
- Shigeru Mukai, Duality between $D(X)$ and $D(\hat X)$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081
- Shigeru Mukai, Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 515–550. MR 946249, DOI 10.2969/aspm/01010515
- Juan Carlos Naranjo, Fourier transform and Prym varieties, J. Reine Angew. Math. 560 (2003), 221–230. MR 1992806, DOI 10.1515/crll.2003.057
- Giuseppe Pareschi and Mihnea Popa, Generic vanishing and minimal cohomology classes on abelian varieties, Math. Ann. 340 (2008), no. 1, 209–222. MR 2349774, DOI 10.1007/s00208-007-0146-7
- Ziv Ran, On a theorem of Martens, Rend. Sem. Mat. Univ. Politec. Torino 44 (1986), no. 2, 287–291 (1987). MR 906019
- Roy Smith and Robert Varley, A Torelli theorem for special divisor varieties $X$ associated to doubly covered curves $\~C/C$, Internat. J. Math. 13 (2002), no. 1, 67–91. MR 1884563, DOI 10.1142/S0129167X02001137
- Gerald E. Welters, A theorem of Gieseker-Petri type for Prym varieties, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 4, 671–683. MR 839690
- Gerald E. Welters, The surface $C-C$ on Jacobi varieties and 2nd order theta functions, Acta Math. 157 (1986), no. 1-2, 1–22. MR 857677, DOI 10.1007/BF02392589
- G. E. Welters, Curves of twice the minimal class on principally polarized abelian varieties, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 1, 87–109. MR 883371
- Gerald E. Welters, Recovering the curve data from a general Prym variety, Amer. J. Math. 109 (1987), no. 1, 165–182. MR 878204, DOI 10.2307/2374557
Additional Information
- Martí Lahoz
- Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
- Address at time of publication: Département de Mathématiques d’Orsay, Université Paris Sud 11, Bâtiment 425, F-91405 Orsay, France
- Email: marti.lahoz@ub.edu
- Juan Carlos Naranjo
- Affiliation: Departament d’Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
- MR Author ID: 318430
- ORCID: 0000-0003-1989-4924
- Email: jcnaranjo@ub.edu
- Received by editor(s): December 1, 2010
- Received by editor(s) in revised form: May 26, 2011, and July 25, 2011
- Published electronically: January 9, 2013
- Additional Notes: Both authors have been partially supported by the Proyecto de Investigación MTM2009-14163-C02-01. This paper was revised while the first-named author was supported by the SFB/TR 45 ‘Periods, Moduli Spaces and Arithmetic of Algebraic Varieties’ of the DFG (German Research Foundation)
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 5051-5069
- MSC (2010): Primary 14Kxx; Secondary 14Hxx
- DOI: https://doi.org/10.1090/S0002-9947-2013-05675-9
- MathSciNet review: 3074366