Delocalized Chern character for stringy orbifold K-theory
HTML articles powered by AMS MathViewer
- by Jianxun Hu and Bai-Ling Wang PDF
- Trans. Amer. Math. Soc. 365 (2013), 6309-6341 Request permission
Abstract:
In this paper, we define a stringy product on $K^*_{orb}(\mathfrak {X}) \otimes \mathbb {C}$, the orbifold K-theory of any almost complex presentable orbifold $\mathfrak {X}$. We establish that under this stringy product, the delocalized Chern character \[ ch_{deloc} : K^*_{orb}(\mathfrak {X}) \otimes \mathbb {C} \longrightarrow H^*_{CR}(\mathfrak {X}), \] after a canonical modification, is a ring isomorphism. Here $H^*_{CR}(\mathfrak {X})$ is the Chen-Ruan cohomology of $\mathfrak {X}$. The proof relies on an intrinsic description of the obstruction bundles in the construction of the Chen-Ruan product. As an application, we investigate this stringy product on the equivariant K-theory $K^*_G(G)$ of a finite group $G$ with the conjugation action. It turns out that the stringy product is different from the Pontryagin product (the latter is also called the fusion product in string theory).References
- A. Adem, M. Kalus, Lectures on Orbifolds and Group Cohomology Advanced Lectures in Mathematics 16 (L.Ji and S-T Yau, editors), Transformation Groups and Moduli Spaces of Curves (2010), 1-17.
- Alejandro Adem, Johann Leida, and Yongbin Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge University Press, Cambridge, 2007. MR 2359514, DOI 10.1017/CBO9780511543081
- Alejandro Adem and Yongbin Ruan, Twisted orbifold $K$-theory, Comm. Math. Phys. 237 (2003), no. 3, 533–556. MR 1993337, DOI 10.1007/s00220-003-0849-x
- A. Adem, Y. Ruan, B. Zhang, A stringy product on twisted orbifold K-theory. Morfismos (10th Anniversary Issue), 11, no. 2 (2007), 33-64. ArXiv:0605534.
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. I, Ann. of Math. (2) 86 (1967), 374–407. MR 212836, DOI 10.2307/1970694
- Michael Atiyah and Graeme Segal, Twisted $K$-theory, Ukr. Mat. Visn. 1 (2004), no. 3, 287–330; English transl., Ukr. Math. Bull. 1 (2004), no. 3, 291–334. MR 2172633
- Paul Baum and Alain Connes, Geometric $K$-theory for Lie groups and foliations, Enseign. Math. (2) 46 (2000), no. 1-2, 3–42. MR 1769535
- Paul Baum and Alain Connes, $K$-theory for discrete groups, Operator algebras and applications, Vol. 1, London Math. Soc. Lecture Note Ser., vol. 135, Cambridge Univ. Press, Cambridge, 1988, pp. 1–20. MR 996437, DOI 10.1007/978-1-4612-3762-4_{1}
- Victor V. Batyrev, Birational Calabi-Yau $n$-folds have equal Betti numbers, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 1–11. MR 1714818, DOI 10.1017/CBO9780511721540.002
- Edward Becerra and Bernardo Uribe, Stringy product on twisted orbifold $K$-theory for abelian quotients, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5781–5803. MR 2529914, DOI 10.1090/S0002-9947-09-04760-6
- Jean-Luc Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1197353, DOI 10.1007/978-0-8176-4731-5
- J.-L. Brylinski and Victor Nistor, Cyclic cohomology of étale groupoids, $K$-Theory 8 (1994), no. 4, 341–365. MR 1300545, DOI 10.1007/BF00961407
- Bohui Chen and Shengda Hu, A deRham model for Chen-Ruan cohomology ring of abelian orbifolds, Math. Ann. 336 (2006), no. 1, 51–71. MR 2242619, DOI 10.1007/s00208-006-0774-3
- Weimin Chen and Yongbin Ruan, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1–31. MR 2104605, DOI 10.1007/s00220-004-1089-4
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Dan Edidin, Tyler J. Jarvis, and Takashi Kimura, Logarithmic trace and orbifold products, Duke Math. J. 153 (2010), no. 3, 427–473. MR 2667422, DOI 10.1215/00127094-2010-028
- Barbara Fantechi and Lothar Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), no. 2, 197–227. MR 1971293, DOI 10.1215/S0012-7094-03-11721-4
- Daniel S. Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994), no. 2, 343–398. MR 1256993
- Daniel S. Freed, $K$-theory in quantum field theory, Current developments in mathematics, 2001, Int. Press, Somerville, MA, 2002, pp. 41–87. MR 1971377
- Rebecca Goldin, Megumi Harada, Tara S. Holm, and Takashi Kimura, The full orbifold $K$-theory of abelian symplectic quotients, J. K-Theory 8 (2011), no. 2, 339–362. MR 2842935, DOI 10.1017/is010005021jkt118
- Andre Henriques and David S. Metzler, Presentations of noneffective orbifolds, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2481–2499. MR 2048526, DOI 10.1090/S0002-9947-04-03379-3
- Richard Hepworth, The age grading and the Chen-Ruan cup product, Bull. Lond. Math. Soc. 42 (2010), no. 5, 868–878. MR 2721746, DOI 10.1112/blms/bdq043
- Michel Hilsum and Georges Skandalis, Morphismes $K$-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 325–390 (French, with English summary). MR 925720
- Tyler J. Jarvis, Ralph Kaufmann, and Takashi Kimura, Stringy $K$-theory and the Chern character, Invent. Math. 168 (2007), no. 1, 23–81. MR 2285746, DOI 10.1007/s00222-006-0026-x
- Tetsuro Kawasaki, The index of elliptic operators over $V$-manifolds, Nagoya Math. J. 84 (1981), 135–157. MR 641150
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR 1031992
- Ernesto Lupercio and Bernardo Uribe, Gerbes over orbifolds and twisted $K$-theory, Comm. Math. Phys. 245 (2004), no. 3, 449–489. MR 2045679, DOI 10.1007/s00220-003-1035-x
- Ieke Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 205–222. MR 1950948, DOI 10.1090/conm/310/05405
- I. Moerdijk and J. Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Cambridge University Press, Cambridge, 2003. MR 2012261, DOI 10.1017/CBO9780511615450
- I. Moerdijk and D. A. Pronk, Orbifolds, sheaves and groupoids, $K$-Theory 12 (1997), no. 1, 3–21. MR 1466622, DOI 10.1023/A:1007767628271
- I. Moerdijk and D. A. Pronk, Simplicial cohomology of orbifolds, Indag. Math. (N.S.) 10 (1999), no. 2, 269–293. MR 1816220, DOI 10.1016/S0019-3577(99)80021-4
- M. K. Murray, Bundle gerbes, J. London Math. Soc. (2) 54 (1996), no. 2, 403–416. MR 1405064, DOI 10.1093/acprof:oso/9780199534920.003.0012
- Michael K. Murray and Daniel Stevenson, Bundle gerbes: stable isomorphism and local theory, J. London Math. Soc. (2) 62 (2000), no. 3, 925–937. MR 1794295, DOI 10.1112/S0024610700001551
- JianZhong Pan, YongBin Ruan, and XiaoQin Yin, Gerbes and twisted orbifold quantum cohomology, Sci. China Ser. A 51 (2008), no. 6, 995–1016. MR 2410979, DOI 10.1007/s11425-007-0154-9
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7
- Yongbin Ruan, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000) Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 187–233. MR 1941583, DOI 10.1090/conm/312/05384
- Yongbin Ruan, Stringy orbifolds, Orbifolds in mathematics and physics (Madison, WI, 2001) Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 259–299. MR 1950951, DOI 10.1090/conm/310/05408
- Yongbin Ruan, The cohomology ring of crepant resolutions of orbifolds, Gromov-Witten theory of spin curves and orbifolds, Contemp. Math., vol. 403, Amer. Math. Soc., Providence, RI, 2006, pp. 117–126. MR 2234886, DOI 10.1090/conm/403/07597
- Yongbin Ruan, Discrete torsion and twisted orbifold cohomology, J. Symplectic Geom. 2 (2003), no. 1, 1–24. MR 2128387, DOI 10.4310/JSG.2004.v2.n1.a1
- Yongbin Ruan, Surgery, quantum cohomology and birational geometry, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, vol. 196, Amer. Math. Soc., Providence, RI, 1999, pp. 183–198. MR 1736218, DOI 10.1090/trans2/196/09
- I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359–363. MR 79769, DOI 10.1073/pnas.42.6.359
- W. Thurston, The geometry and topology of three-manifolds, Princeton Lecture Notes, 1980.
- Jean-Louis Tu and Ping Xu, Chern character for twisted $K$-theory of orbifolds, Adv. Math. 207 (2006), no. 2, 455–483. MR 2271013, DOI 10.1016/j.aim.2005.12.001
- Jean-Louis Tu, Ping Xu, and Camille Laurent-Gengoux, Twisted $K$-theory of differentiable stacks, Ann. Sci. École Norm. Sup. (4) 37 (2004), no. 6, 841–910 (English, with English and French summaries). MR 2119241, DOI 10.1016/j.ansens.2004.10.002
- Chin-Lung Wang, On the topology of birational minimal models, J. Differential Geom. 50 (1998), no. 1, 129–146. MR 1678489
Additional Information
- Jianxun Hu
- Affiliation: Department of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, People’s Republic of China
- Email: stsjxhu@mail.sysu.edu.cn
- Bai-Ling Wang
- Affiliation: Department of Mathematics, Australian National University, Canberra ACT 0200, Australia
- Email: bai-ling.wang@anu.edu.au
- Received by editor(s): October 5, 2011
- Received by editor(s) in revised form: March 19, 2012
- Published electronically: June 4, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 6309-6341
- MSC (2010): Primary 57R19, 19L10, 22A22; Secondary 55N15, 53D45
- DOI: https://doi.org/10.1090/S0002-9947-2013-05834-5
- MathSciNet review: 3105753