## Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy

HTML articles powered by AMS MathViewer

- by M. Burak Erdoğan and William R. Green PDF
- Trans. Amer. Math. Soc.
**365**(2013), 6403-6440 Request permission

## Abstract:

We investigate $L^1(\mathbb {R}^2)\to L^\infty (\mathbb {R}^2)$ dispersive estimates for the Schrödinger operator $H=-\Delta +V$ when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the $t^{-1}$ decay rate. We also show that if there is a p-wave resonance or an eigenvalue at zero energy, then there is a time dependent operator $F_t$ satisfying $\|F_t\|_{L^1\to L^\infty } \lesssim 1$ such that \[ \|e^{itH}P_{ac}-F_t\|_{L^1\to L^\infty } \lesssim |t|^{-1}, \text { for } |t|>1.\] We also establish a weighted dispersive estimate with $t^{-1}$ decay rate in the case when there is an eigenvalue at zero energy but no resonances.## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - Shmuel Agmon,
*Spectral properties of Schrödinger operators and scattering theory*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**2**(1975), no. 2, 151–218. MR**397194** - D. Bollé, F. Gesztesy, and C. Danneels,
*Threshold scattering in two dimensions*, Ann. Inst. H. Poincaré Phys. Théor.**48**(1988), no. 2, 175–204 (English, with French summary). MR**952661** - D. Bollé, F. Gesztesy, and S. F. J. Wilk,
*A complete treatment of low-energy scattering in one dimension*, J. Operator Theory**13**(1985), no. 1, 3–31. MR**768299** - Erdo\smash{ğ}an, M. B., and W.R. Green.
*A weighted dispersive estimate for Schrödinger operators in dimension two*. Preprint (2012): Accepted by Comm. Math. Phys. - M. Burak Erdoğan and Wilhelm Schlag,
*Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. I*, Dyn. Partial Differ. Equ.**1**(2004), no. 4, 359–379. MR**2127577**, DOI 10.4310/DPDE.2004.v1.n4.a1 - M. Burak Erdoğan and Wilhelm Schlag,
*Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three. II*, J. Anal. Math.**99**(2006), 199–248. MR**2279551**, DOI 10.1007/BF02789446 - Michael Goldberg,
*A dispersive bound for three-dimensional Schrödinger operators with zero energy eigenvalues*, Comm. Partial Differential Equations**35**(2010), no. 9, 1610–1634. MR**2754057**, DOI 10.1080/03605302.2010.493967 - M. Goldberg,
*Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials*, Geom. Funct. Anal.**16**(2006), no. 3, 517–536. MR**2238943**, DOI 10.1007/s00039-006-0568-5 - M. Goldberg,
*Dispersive estimates for the three-dimensional Schrödinger equation with rough potentials*, Amer. J. Math.**128**(2006), no. 3, 731–750. MR**2230923** - M. Goldberg and W. Schlag,
*Dispersive estimates for Schrödinger operators in dimensions one and three*, Comm. Math. Phys.**251**(2004), no. 1, 157–178. MR**2096737**, DOI 10.1007/s00220-004-1140-5 - Arne Jensen,
*Spectral properties of Schrödinger operators and time-decay of the wave functions results in $L^{2}(\textbf {R}^{m})$, $m\geq 5$*, Duke Math. J.**47**(1980), no. 1, 57–80. MR**563367** - Arne Jensen,
*Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^{2}(\textbf {R}^{4})$*, J. Math. Anal. Appl.**101**(1984), no. 2, 397–422. MR**748579**, DOI 10.1016/0022-247X(84)90110-0 - Arne Jensen and Tosio Kato,
*Spectral properties of Schrödinger operators and time-decay of the wave functions*, Duke Math. J.**46**(1979), no. 3, 583–611. MR**544248** - Arne Jensen and Gheorghe Nenciu,
*A unified approach to resolvent expansions at thresholds*, Rev. Math. Phys.**13**(2001), no. 6, 717–754. MR**1841744**, DOI 10.1142/S0129055X01000843 - Arne Jensen and Kenji Yajima,
*A remark on $L^p$-boundedness of wave operators for two-dimensional Schrödinger operators*, Comm. Math. Phys.**225**(2002), no. 3, 633–637. MR**1888876**, DOI 10.1007/s002200100603 - J.-L. Journé, A. Soffer, and C. D. Sogge,
*Decay estimates for Schrödinger operators*, Comm. Pure Appl. Math.**44**(1991), no. 5, 573–604. MR**1105875**, DOI 10.1002/cpa.3160440504 - Simon Moulin,
*High frequency dispersive estimates in dimension two*, Ann. Henri Poincaré**10**(2009), no. 2, 415–428. MR**2511893**, DOI 10.1007/s00023-009-0402-3 - Minoru Murata,
*Asymptotic expansions in time for solutions of Schrödinger-type equations*, J. Funct. Anal.**49**(1982), no. 1, 10–56. MR**680855**, DOI 10.1016/0022-1236(82)90084-2 - Jeffrey Rauch,
*Local decay of scattering solutions to Schrödinger’s equation*, Comm. Math. Phys.**61**(1978), no. 2, 149–168. MR**495958** - Michael Reed and Barry Simon,
*Methods of modern mathematical physics. I. Functional analysis*, Academic Press, New York-London, 1972. MR**0493419** - Igor Rodnianski and Wilhelm Schlag,
*Time decay for solutions of Schrödinger equations with rough and time-dependent potentials*, Invent. Math.**155**(2004), no. 3, 451–513. MR**2038194**, DOI 10.1007/s00222-003-0325-4 - W. Schlag,
*Dispersive estimates for Schrödinger operators: a survey*, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 255–285. MR**2333215** - W. Schlag,
*Dispersive estimates for Schrödinger operators in dimension two*, Comm. Math. Phys.**257**(2005), no. 1, 87–117. MR**2163570**, DOI 10.1007/s00220-004-1262-9 - Mihai Stoiciu,
*An estimate for the number of bound states of the Schrödinger operator in two dimensions*, Proc. Amer. Math. Soc.**132**(2004), no. 4, 1143–1151. MR**2045431**, DOI 10.1090/S0002-9939-03-07257-5 - Ricardo Weder,
*$L^p$-$L^{\dot p}$ estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential*, J. Funct. Anal.**170**(2000), no. 1, 37–68. MR**1736195**, DOI 10.1006/jfan.1999.3507 - Kenji Yajima,
*$L^p$-boundedness of wave operators for two-dimensional Schrödinger operators*, Comm. Math. Phys.**208**(1999), no. 1, 125–152. MR**1729881**, DOI 10.1007/s002200050751 - K. Yajima,
*Dispersive estimates for Schrödinger equations with threshold resonance and eigenvalue*, Comm. Math. Phys.**259**(2005), no. 2, 475–509. MR**2172692**, DOI 10.1007/s00220-005-1375-9

## Additional Information

**M. Burak Erdoğan**- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: berdogan@math.uiuc.edu
**William R. Green**- Affiliation: Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, Illinois 61920
- Address at time of publication: Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana 47803
- MR Author ID: 906481
- ORCID: 0000-0001-9399-8380
- Email: wrgreen2@eiu.edu, green@rose-hulman.edu
- Received by editor(s): January 11, 2012
- Received by editor(s) in revised form: April 19, 2012
- Published electronically: April 18, 2013
- Additional Notes: The first author was partially supported by NSF grant DMS-0900865.
- © Copyright 2013
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**365**(2013), 6403-6440 - MSC (2010): Primary 35J10
- DOI: https://doi.org/10.1090/S0002-9947-2013-05861-8
- MathSciNet review: 3105757