Quasilinear equations with source terms on Carnot groups
HTML articles powered by AMS MathViewer
- by Nguyen Cong Phuc and Igor E. Verbitsky PDF
- Trans. Amer. Math. Soc. 365 (2013), 6569-6593 Request permission
Abstract:
In this paper we give necessary and sufficient conditions for the existence of solutions to quasilinear equations of Lane-Emden type with measure data on a Carnot group $\mathbb G$ of arbitrary step. The quasilinear part involves operators of the $p$-Laplacian type $\Delta _{\mathbb G, p}$, $1<p<\infty$. These results are based on new a priori estimates of solutions in terms of nonlinear potentials of Th. Wolff’s type. As a consequence, we characterize completely removable singularities, and we prove a Liouville type theorem for supersolutions of quasilinear equations with source terms which has been known only for equations involving the sub-Laplacian ($p=2$) on the Heisenberg group.References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- D. R. Adams and M. Pierre, Capacitary strong type estimates in semilinear problems, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 117–135 (English, with French summary). MR 1112194
- Pierre Baras and Michel Pierre, Critère d’existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 3, 185–212 (French, with English summary). MR 797270
- Marie-Françoise Bidaut-Véron, Necessary conditions of existence for an elliptic equation with source term and measure data involving $p$-Laplacian, Proceedings of the 2001 Luminy Conference on Quasilinear Elliptic and Parabolic Equations and System, Electron. J. Differ. Equ. Conf., vol. 8, Southwest Texas State Univ., San Marcos, TX, 2002, pp. 23–34. MR 1990293
- Marie Françoise Bidaut-Véron, Removable singularities and existence for a quasilinear equation with absorption or source term and measure data, Adv. Nonlinear Stud. 3 (2003), no. 1, 25–63. MR 1955596, DOI 10.1515/ans-2003-0102
- I. Birindelli, I. Capuzzo Dolcetta, and A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré C Anal. Non Linéaire 14 (1997), no. 3, 295–308 (English, with English and French summaries). MR 1450950, DOI 10.1016/S0294-1449(97)80138-2
- Luca Capogna, Donatella Danielli, and Nicola Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations 18 (1993), no. 9-10, 1765–1794. MR 1239930, DOI 10.1080/03605309308820992
- Carme Cascante and Joaquin M. Ortega, Norm inequalities for potential-type operators in homogeneous spaces, Math. Nachr. 228 (2001), 85–107. MR 1845908, DOI 10.1002/1522-2616(200108)228:1<85::AID-MANA85>3.3.CO;2-4
- Carme Cascante, Joaquin M. Ortega, and Igor E. Verbitsky, Nonlinear potentials and two weight trace inequalities for general dyadic and radial kernels, Indiana Univ. Math. J. 53 (2004), no. 3, 845–882. MR 2086703, DOI 10.1512/iumj.2004.53.2443
- Wei-Liang Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98–105 (German). MR 1880, DOI 10.1007/BF01450011
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- William S. Cohn, Guozhen Lu, and Shanzhen Lu, Higher order Poincaré inequalities associated with linear operators on stratified groups and applications, Math. Z. 244 (2003), no. 2, 309–335. MR 1992541, DOI 10.1007/s00209-003-0501-7
- Gianni Dal Maso, François Murat, Luigi Orsina, and Alain Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 4, 741–808. MR 1760541
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- Nicola Garofalo and Ermanno Lanconelli, Existence and nonexistence results for semilinear equations on the Heisenberg group, Indiana Univ. Math. J. 41 (1992), no. 1, 71–98. MR 1160903, DOI 10.1512/iumj.1992.41.41005
- Xiaolong Han and Guozhen Lu, Regularity of solutions to an integral equation associated with Bessel potential, Commun. Pure Appl. Anal. 10 (2011), no. 4, 1111–1119. MR 2787437, DOI 10.3934/cpaa.2011.10.1111
- L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526
- Juha Heinonen and Ilkka Holopainen, Quasiregular maps on Carnot groups, J. Geom. Anal. 7 (1997), no. 1, 109–148. MR 1630785, DOI 10.1007/BF02921707
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- T. Kilpeläinen, $p$-Laplacian type equations involving measures, Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 167–176. MR 1957528
- Tero Kilpeläinen and Jan Malý, Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 4, 591–613. MR 1205885
- Tero Kilpeläinen and Jan Malý, The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), no. 1, 137–161. MR 1264000, DOI 10.1007/BF02392793
- A. Korányi and H. M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math. 111 (1995), no. 1, 1–87. MR 1317384, DOI 10.1006/aima.1995.1017
- Guo Zhen Lu, Potential analysis on Carnot groups. II. Relationship between Hausdorff measures and capacities, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 1, 25–46. MR 2056553, DOI 10.1007/s10114-003-0297-8
- Alexander Nagel, Elias M. Stein, and Stephen Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math. 155 (1985), no. 1-2, 103–147. MR 793239, DOI 10.1007/BF02392539
- Nguyen Cong Phuc and Igor E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math. (2) 168 (2008), no. 3, 859–914. MR 2456885, DOI 10.4007/annals.2008.168.859
- Nguyen Cong Phuc and Igor E. Verbitsky, Singular quasilinear and Hessian equations and inequalities, J. Funct. Anal. 256 (2009), no. 6, 1875–1906. MR 2498563, DOI 10.1016/j.jfa.2009.01.012
- Stanislav Pohozaev and Laurent Véron, Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group, Manuscripta Math. 102 (2000), no. 1, 85–99. MR 1771229, DOI 10.1007/PL00005851
- P. K. Rashevsky, Any two points of a total nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. Liebknecht, Ser. Phys. Math., (Russian) 2 (1938), 83–94.
- E. Sawyer and R. L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. 114 (1992), no. 4, 813–874. MR 1175693, DOI 10.2307/2374799
- Bengt Ove Turesson, Nonlinear potential theory and weighted Sobolev spaces, Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000. MR 1774162, DOI 10.1007/BFb0103908
- Neil S. Trudinger and Xu-Jia Wang, On the weak continuity of elliptic operators and applications to potential theory, Amer. J. Math. 124 (2002), no. 2, 369–410. MR 1890997
- V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. MR 0376938
- N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
Additional Information
- Nguyen Cong Phuc
- Affiliation: Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton Rouge, Louisiana 70803
- Email: pcnguyen@math.lsu.edu
- Igor E. Verbitsky
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- Email: verbitskyi@missouri.edu
- Received by editor(s): December 18, 2011
- Received by editor(s) in revised form: July 3, 2012
- Published electronically: June 3, 2013
- Additional Notes: The first author was supported in part by NSF Grant DMS-0901083
The second author was supported in part by NSF Grant DMS-0901550 - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 6569-6593
- MSC (2010): Primary 35H20; Secondary 35A01, 20F18
- DOI: https://doi.org/10.1090/S0002-9947-2013-05920-X
- MathSciNet review: 3105763