Convergence of general inverse $\sigma _k$-flow on Kähler manifolds with Calabi ansatz
HTML articles powered by AMS MathViewer
- by Hao Fang and Mijia Lai PDF
- Trans. Amer. Math. Soc. 365 (2013), 6543-6567 Request permission
Abstract:
We study the convergence behavior of the general inverse $\sigma _k$-flow on Kähler manifolds with initial metrics satisfying the Calabi ansatz. The limiting metrics can be either smooth or singular. In the latter case, interesting conic singularities along negatively self-intersected subvarieties are formed as a result of partial blow up.References
- L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383–402. MR 1658612, DOI 10.1007/BF02498216
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, DOI 10.1007/BF01389058
- X. X. Chen, A new parabolic flow in Kähler manifolds, Comm. Anal. Geom. 12 (2004), no. 4, 837–852. MR 2104078
- S. K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1999), no. 1, 1–15. Sir Michael Atiyah: a great mathematician of the twentieth century. MR 1701920, DOI 10.4310/AJM.1999.v3.n1.a1
- Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. MR 2505296, DOI 10.1090/S0894-0347-09-00629-8
- Mikhail Feldman, Tom Ilmanen, and Dan Knopf, Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom. 65 (2003), no. 2, 169–209. MR 2058261
- H. Fang and M. Lai, On the geometric flows solving Kählerian inverse $\sigma _k$ equations, arXiv:1203.2571, to appear in Pac. J. Math
- Hao Fang, Mijia Lai, and Xinan Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math. 653 (2011), 189–220. MR 2794631, DOI 10.1515/CRELLE.2011.027
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- C. Li, On rotationally symmetric Kähler-Ricci solitons, arXiv:1004.4049
- Jian Song and Gang Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653. MR 2357504, DOI 10.1007/s00222-007-0076-8
- J. Song and G. Tian, The Kähler-Ricci flow through singularities, arXiv:0909.4898
- Jian Song and Ben Weinkove, On the convergence and singularities of the $J$-flow with applications to the Mabuchi energy, Comm. Pure Appl. Math. 61 (2008), no. 2, 210–229. MR 2368374, DOI 10.1002/cpa.20182
- Jian Song and Ben Weinkove, The Kähler-Ricci flow on Hirzebruch surfaces, J. Reine Angew. Math. 659 (2011), 141–168. MR 2837013, DOI 10.1515/CRELLE.2011.071
- J. Song and B. Weinkove, Contracting exceptional divisors by the Kähler-Ricci flow, arXiv:1003.0718v2
- J. Song and B. Weinkove, Lecture notes on Kähler-Ricci flow, www.math.rutgers.edu/$\sim$ jiansong/publication_files/krflectures112111.pdf
- Jian Song and Yuan Yuan, Metric flips with Calabi ansatz, Geom. Funct. Anal. 22 (2012), no. 1, 240–265. MR 2899688, DOI 10.1007/s00039-012-0151-1
- Gang Tian, New results and problems on Kähler-Ricci flow, Astérisque 322 (2008), 71–92 (English, with English and French summaries). Géométrie différentielle, physique mathématique, mathématiques et société. II. MR 2521654
- Gang Tian and Zhou Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192. MR 2243679, DOI 10.1007/s11401-005-0533-x
- Lihe Wang, On the regularity theory of fully nonlinear parabolic equations. II, Comm. Pure Appl. Math. 45 (1992), no. 2, 141–178. MR 1139064, DOI 10.1002/cpa.3160450202
- Ben Weinkove, Convergence of the $J$-flow on Kähler surfaces, Comm. Anal. Geom. 12 (2004), no. 4, 949–965. MR 2104082
- Ben Weinkove, On the $J$-flow in higher dimensions and the lower boundedness of the Mabuchi energy, J. Differential Geom. 73 (2006), no. 2, 351–358. MR 2226957
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Additional Information
- Hao Fang
- Affiliation: Department of Mathematics, University of Iowa, 14 McLean Hall, Iowa City, Iowa 52242
- MR Author ID: 671151
- Email: hao-fang@uiowa.edu
- Mijia Lai
- Affiliation: Department of Mathematics, University of Rochester, 915 Hylan Building, RC Box 270138, Rochester, New York 14627
- MR Author ID: 936451
- Email: lai@math.rochester.edu
- Received by editor(s): March 23, 2012
- Received by editor(s) in revised form: June 13, 2012
- Published electronically: August 19, 2013
- Additional Notes: The first author was partially supported by NSF grant DMS1008249.
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 365 (2013), 6543-6567
- MSC (2010): Primary 53C44
- DOI: https://doi.org/10.1090/S0002-9947-2013-05947-8
- MathSciNet review: 3105762