Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Borel conjecture and dual Borel conjecture
HTML articles powered by AMS MathViewer

by Martin Goldstern, Jakob Kellner, Saharon Shelah and Wolfgang Wohofsky PDF
Trans. Amer. Math. Soc. 366 (2014), 245-307 Request permission

Abstract:

We show that it is consistent that the Borel Conjecture and the dual Borel Conjecture hold simultaneously.
References
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E35, 03E17, 28E15
  • Retrieve articles in all journals with MSC (2010): 03E35, 03E17, 28E15
Additional Information
  • Martin Goldstern
  • Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
  • Email: martin.goldstern@tuwien.ac.at
  • Jakob Kellner
  • Affiliation: Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Straße 25, 1090 Wien, Austria
  • Email: kellner@fsmat.at
  • Saharon Shelah
  • Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel — and — Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08854
  • MR Author ID: 160185
  • ORCID: 0000-0003-0462-3152
  • Email: shelah@math.huji.ac.il
  • Wolfgang Wohofsky
  • Affiliation: Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
  • MR Author ID: 1043905
  • Email: wolfgang.wohofsky@gmx.at
  • Received by editor(s): May 28, 2011
  • Received by editor(s) in revised form: December 27, 2011
  • Published electronically: August 19, 2013
  • Additional Notes: The authors gratefully acknowledge the following partial support: US National Science Foundation Grant No. 0600940 (all authors); US-Israel Binational Science Foundation grant 2006108 (third author); Austrian Science Fund (FWF): P21651 and P23875 and EU FP7 Marie Curie grant PERG02-GA-2207-224747 (second and fourth authors); FWF grant P21968 (first and fourth authors); ÖAW Doc fellowship (fourth author). This is publication 969 of the third author

  • Dedicated: Dedicated to the memory of Richard Laver (1942–2012)
  • © Copyright 2013 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 366 (2014), 245-307
  • MSC (2010): Primary 03E35; Secondary 03E17, 28E15
  • DOI: https://doi.org/10.1090/S0002-9947-2013-05783-2
  • MathSciNet review: 3118397