Five embeddings of one simple group
HTML articles powered by AMS MathViewer
- by Ivan Cheltsov and Constantin Shramov PDF
- Trans. Amer. Math. Soc. 366 (2014), 1289-1331 Request permission
Abstract:
We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group $\mathrm {A}_6$. As an application, we obtain that $\mathrm {Bir}(\mathbb {P}^{3})$ has at least five non-conjugate subgroups isomorphic to $\mathrm {A}_{6}$.References
- Allan Adler, On the automorphism group of a certain cubic threefold, Amer. J. Math. 100 (1978), no. 6, 1275–1280. MR 522700, DOI 10.2307/2373973
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- A. Beauville, Non-rationality of the symmetric sextic Fano threefold, arXiv:math/1102.1255 (2011).
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Thomas Breuer, Characters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 280, Cambridge University Press, Cambridge, 2000. MR 1796706
- I. A. Chel′tsov, Birationally rigid Fano varieties, Uspekhi Mat. Nauk 60 (2005), no. 5(365), 71–160 (Russian, with Russian summary); English transl., Russian Math. Surveys 60 (2005), no. 5, 875–965. MR 2195677, DOI 10.1070/RM2005v060n05ABEH003736
- Ivan Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), no. 4, 1118–1144. MR 2465686, DOI 10.1007/s00039-008-0687-2
- I. A. Chel′tsov and K. A. Shramov, Log-canonical thresholds for nonsingular Fano threefolds, Uspekhi Mat. Nauk 63 (2008), no. 5(383), 73–180 (Russian, with Russian summary); English transl., Russian Math. Surveys 63 (2008), no. 5, 859–958. MR 2484031, DOI 10.1070/RM2008v063n05ABEH004561
- I. Cheltsov, C. Shramov, On exceptional quotient singularities, Geometry and Topology, 15 (2011), 1843–1882
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- Alessio Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995), no. 2, 223–254. MR 1311348
- Alessio Corti, Singularities of linear systems and $3$-fold birational geometry, Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser., vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 259–312. MR 1798984
- János Kollár, Karen E. Smith, and Alessio Corti, Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, vol. 92, Cambridge University Press, Cambridge, 2004. MR 2062787, DOI 10.1017/CBO9780511734991
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- Igor V. Dolgachev and Vasily A. Iskovskikh, Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math., vol. 269, Birkhäuser Boston, Boston, MA, 2009, pp. 443–548. MR 2641179, DOI 10.1007/978-0-8176-4745-2_{1}1
- Walter Feit, The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 55–93. MR 0427449
- Hans Finkelnberg, Small resolutions of the Segre cubic, Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 3, 261–277. MR 914085
- Hans Finkelnberg and Jürgen Werner, Small resolutions of nodal cubic threefolds, Nederl. Akad. Wetensch. Indag. Math. 51 (1989), no. 2, 185–198. MR 1005050
- Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos. Math. 146 (2010), no. 1, 169–192. MR 2581246, DOI 10.1112/S0010437X09004370
- C. Hacon, J. McKernan, Ch. Xu, On the birational automorphisms of varieties of general type, arXiv:math/1011.1464 (2010)
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547, DOI 10.1007/BFb0094399
- V. A. Iskovskih and Ju. I. Manin, Three-dimensional quartics and counterexamples to the Lüroth problem, Mat. Sb. (N.S.) 86(128) (1971), 140–166 (Russian). MR 0291172
- V. A. Iskovskikh and Yu. G. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math. Sci., vol. 47, Springer, Berlin, 1999, pp. 1–247. MR 1668579
- V. A. Iskovskikh and A. V. Pukhlikov, Birational automorphisms of multidimensional algebraic manifolds, J. Math. Sci. 82 (1996), no. 4, 3528–3613. Algebraic geometry, 1. MR 1426395, DOI 10.1007/BF02363913
- Yujiro Kawamata, On Fujita’s freeness conjecture for $3$-folds and $4$-folds, Math. Ann. 308 (1997), no. 3, 491–505. MR 1457742, DOI 10.1007/s002080050085
- Yujiro Kawamata, Subadjunction of log canonical divisors. II, Amer. J. Math. 120 (1998), no. 5, 893–899. MR 1646046
- János Kollár, Singularities of pairs, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287. MR 1492525
- Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472, DOI 10.1007/978-3-642-18808-4
- Nicole Lemire, Vladimir L. Popov, and Zinovy Reichstein, Cayley groups, J. Amer. Math. Soc. 19 (2006), no. 4, 921–967. MR 2219306, DOI 10.1090/S0894-0347-06-00522-4
- Marco Manetti, Normal degenerations of the complex projective plane, J. Reine Angew. Math. 419 (1991), 89–118. MR 1116920, DOI 10.1515/crll.1991.419.89
- Massimiliano Mella, Birational geometry of quartic 3-folds. II. The importance of being $\Bbb Q$-factorial, Math. Ann. 330 (2004), no. 1, 107–126. MR 2091681, DOI 10.1007/s00208-004-0542-1
- S. Mori and Yu. G. Prokhorov, Multiple fibers of del Pezzo fibrations, Tr. Mat. Inst. Steklova 264 (2009), no. Mnogomernaya Algebraicheskaya Geometriya, 137–151; English transl., Proc. Steklov Inst. Math. 264 (2009), no. 1, 131–145. MR 2590844, DOI 10.1134/S0081543809010167
- Shigeru Mukai, Curves and symmetric spaces, Proc. Japan Acad. Ser. A Math. Sci. 68 (1992), no. 1, 7–10. MR 1158012
- Isidro Nieto, The normalizer of the level $(2,2)$-Heisenberg group, Manuscripta Math. 76 (1992), no. 3-4, 257–267. MR 1185019, DOI 10.1007/BF02567760
- K. Pettersen, On nodal determinantal quartic hypersurfaces in $\mathbb {P}^4$, Thesis, University of Oslo (1998)
- Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank $3$, Journal of Algebraic Geometry, to appear
- Miles Reid, Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985) Proc. Sympos. Pure Math., vol. 46, Amer. Math. Soc., Providence, RI, 1987, pp. 345–414. MR 927963
- Jean-Pierre Serre, A Minkowski-style bound for the orders of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Mosc. Math. J. 9 (2009), no. 1, 193–208, back matter (English, with English and Russian summaries). MR 2567402, DOI 10.17323/1609-4514-2009-9-1-183-198
- V. V. Shokurov, Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 1, 105–203 (Russian); English transl., Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 95–202. MR 1162635, DOI 10.1070/IM1993v040n01ABEH001862
- C. Shramov, Birational automorphisms of nodal quartic threefolds, arXiv:math/0803.4348 (2008)
- Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225–246. MR 894378, DOI 10.1007/BF01389077
- Gang Tian and Shing-Tung Yau, Kähler-Einstein metrics on complex surfaces with $C_1>0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203. MR 904143
- J. A. Todd, Configurations defined by six lines in space of three dimensions, Mathematical Proceedings of the Cambridge Philosophical Society 29 (1933), 52–68
- Dana R. Vazzana, Invariants and projections of six lines in projective space, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2673–2688. MR 1828467, DOI 10.1090/S0002-9947-01-02742-8
Additional Information
- Ivan Cheltsov
- Affiliation: Department of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
- MR Author ID: 607648
- Email: I.Cheltsov@ed.ac.uk
- Constantin Shramov
- Affiliation: Steklov Mathematical Institute, Gubkina Str. 8, 119991, Moscow, Russia
- MR Author ID: 907948
- Email: shramov@mccme.ru
- Received by editor(s): February 1, 2011
- Received by editor(s) in revised form: November 27, 2011
- Published electronically: June 11, 2013
- Additional Notes: The first author was supported by the grants NSF DMS-0701465 and EPSRC EP/E048412/1
The second author was supported by the grants RFFI 08-01-00395-a, NSh-1987.2008.1 and EPSRC EP/E048412/1. - © Copyright 2013 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 366 (2014), 1289-1331
- MSC (2010): Primary 14J30, 14J70, 13F15, 14B05
- DOI: https://doi.org/10.1090/S0002-9947-2013-05768-6
- MathSciNet review: 3145732