Volume bounds for shadow covering
HTML articles powered by AMS MathViewer
- by Christina Chen, Tanya Khovanova and Daniel A. Klain PDF
- Trans. Amer. Math. Soc. 366 (2014), 1161-1177 Request permission
Abstract:
For $n \geq 2$ a construction is given for a large family of compact convex sets $K$ and $L$ in $\mathbb {R}^n$ such that the orthogonal projection $L_u$ onto the subspace $u^\perp$ contains a translate of the corresponding projection $K_u$ for every direction $u$, while the volumes of $K$ and $L$ satisfy $V_n(K) > V_n(L).$
It is subsequently shown that if the orthogonal projection $L_u$ onto the subspace $u^\perp$ contains a translate of $K_u$ for every direction $u$, then the set $\frac {n}{n-1} L$ contains a translate of $K$. It follows that \[ V_n(K) \leq \left (\frac {n}{n-1}\right )^n V_n(L).\] In particular, we derive a universal constant bound \[ V_n(K) \leq 2.942 V_n(L),\] independent of the dimension $n$ of the ambient space. Related results are obtained for projections onto subspaces of some fixed intermediate co-dimension. Open questions and conjectures are also posed.
References
- Keith Ball, Some remarks on the geometry of convex sets, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 224–231. MR 950983, DOI 10.1007/BFb0081743
- Keith Ball, Shadows of convex bodies, Trans. Amer. Math. Soc. 327 (1991), no. 2, 891–901. MR 1035998, DOI 10.1090/S0002-9947-1991-1035998-3
- T. Bonnesen and W. Fenchel, Theory of convex bodies, BCS Associates, Moscow, ID, 1987. Translated from the German and edited by L. Boron, C. Christenson and B. Smith. MR 920366
- J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), no. 1, 1–13. MR 1091609, DOI 10.1007/BF01895416
- H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88–94. MR 84791, DOI 10.7146/math.scand.a-10457
- G. D. Chakerian, Inequalities for the difference body of a convex body, Proc. Amer. Math. Soc. 18 (1967), 879–884. MR 218972, DOI 10.1090/S0002-9939-1967-0218972-8
- C. Chen, Maximizing volume ratios for shadow covering by tetrahedra, arXiv:1201.2580v1 (2012).
- R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435–445. MR 1201126, DOI 10.1090/S0002-9947-1994-1201126-7
- R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. MR 1298719, DOI 10.2307/2118606
- R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405. MR 1898210, DOI 10.1090/S0273-0979-02-00941-2
- Richard J. Gardner, Geometric tomography, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, New York, 2006. MR 2251886, DOI 10.1017/CBO9781107341029
- R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. MR 1689343, DOI 10.2307/120978
- R. J. Gardner and A. Volčič, Convex bodies with similar projections, Proc. Amer. Math. Soc. 121 (1994), no. 2, 563–568. MR 1185262, DOI 10.1090/S0002-9939-1994-1185262-5
- Apostolos A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), no. 2, 239–244. MR 1099772, DOI 10.1112/S002557930001295X
- Helmut Groemer, Ein Satz über konvexe Körper und deren Projektionen, Portugal. Math. 21 (1962), 41–43 (German). MR 142055
- H. Hadwiger, Gegenseitige Bedeckbarkeit zweier Eibereiche und Isoperimetrie, Vierteljschr. Naturforsch. Ges. Zürich 86 (1941), 152–156 (German). MR 7274
- H. Hadwiger, Überdeckung ebener Bereiche durch Kreise und Quadrate, Comment. Math. Helv. 13 (1941), 195–200 (German). MR 4995, DOI 10.1007/BF01378060
- H. Hadwiger, Seitenrisse konvexer Körper und Homothetie, Elem. Math. 18 (1963), 97–98 (German). MR 155232
- Daniel A. Klain, Containment and inscribed simplices, Indiana Univ. Math. J. 59 (2010), no. 4, 1231–1244. MR 2815032, DOI 10.1512/iumj.2010.59.4067
- Daniel A. Klain, Covering shadows with a smaller volume, Adv. Math. 224 (2010), no. 2, 601–619. MR 2609017, DOI 10.1016/j.aim.2009.12.008
- Daniel A. Klain, If you can hide behind it, can you hide inside it?, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4585–4601. MR 2806685, DOI 10.1090/S0002-9947-2011-05178-0
- Daniel A. Klain and Gian-Carlo Rota, Introduction to geometric probability, Lezioni Lincee. [Lincei Lectures], Cambridge University Press, Cambridge, 1997. MR 1608265
- Alexander Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math. 120 (1998), no. 4, 827–840. MR 1637955
- D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), no. 2, 164–175. MR 390914, DOI 10.1112/S0025579300006033
- Erwin Lutwak, Intersection bodies and dual mixed volumes, Adv. in Math. 71 (1988), no. 2, 232–261. MR 963487, DOI 10.1016/0001-8708(88)90077-1
- E. Lutwak, Containment and circumscribing simplices, Discrete Comput. Geom. 19 (1998), no. 2, 229–235. MR 1600051, DOI 10.1007/PL00009342
- Michael Papadimitrakis, On the Busemann-Petty problem about convex, centrally symmetric bodies in $\mathbf R^n$, Mathematika 39 (1992), no. 2, 258–266. MR 1203282, DOI 10.1112/S0025579300014996
- C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965) Kobenhavns Univ. Mat. Inst., Copenhagen, 1967, pp. 234–241. MR 0216369
- C. A. Rogers, Sections and projections of convex bodies, Portugal. Math. 24 (1965), 99–103. MR 198344
- C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220–233. MR 92172, DOI 10.1007/BF01899997
- Luis A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Vol. 1, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. With a foreword by Mark Kac. MR 0433364
- Rolf Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper, Math. Z. 101 (1967), 71–82 (German). MR 218976, DOI 10.1007/BF01135693
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229–236. MR 179686, DOI 10.1007/BF02759738
- Valeriu Soltan, Convex sets with homothetic projections, Beiträge Algebra Geom. 51 (2010), no. 1, 237–249. MR 2650489
- Roger Webster, Convexity, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1443208
- Gao Yong Zhang, Intersection bodies and the Busemann-Petty inequalities in $\textbf {R}^4$, Ann. of Math. (2) 140 (1994), no. 2, 331–346. MR 1298716, DOI 10.2307/2118603
- Gaoyong Zhang, A positive solution to the Busemann-Petty problem in $\mathbf R^4$, Ann. of Math. (2) 149 (1999), no. 2, 535–543. MR 1689339, DOI 10.2307/120974
- Jia Zu Zhou, The sufficient condition for a convex body to enclose another in $\textbf {R}^4$, Proc. Amer. Math. Soc. 121 (1994), no. 3, 907–913. MR 1184090, DOI 10.1090/S0002-9939-1994-1184090-4
- Jiazu Zhou, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2797–2803. MR 1451838, DOI 10.1090/S0002-9939-98-04369-X
Additional Information
- Christina Chen
- Affiliation: Newton North High School, Newton, Massachusetts 02460
- Tanya Khovanova
- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
- Daniel A. Klain
- Affiliation: Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854
- Email: Daniel_{}Klain@uml.edu
- Received by editor(s): October 22, 2011
- Published electronically: August 20, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 1161-1177
- MSC (2010): Primary 52A20
- DOI: https://doi.org/10.1090/S0002-9947-2013-05855-2
- MathSciNet review: 3145726