Quasisymmetry and rectifiability of quasispheres
HTML articles powered by AMS MathViewer
- by Matthew Badger, James T. Gill, Steffen Rohde and Tatiana Toro PDF
- Trans. Amer. Math. Soc. 366 (2014), 1413-1431 Request permission
Abstract:
We obtain Dini conditions that guarantee that an asymptotically conformal quasisphere is rectifiable. In particular, we show that for any $\epsilon >0$ integrability of $( \textrm {ess}\sup _{1-t<|x|<1+t} K_f(x)-1 )^{2-\epsilon } dt/t$ implies that the image of the unit sphere under a global quasiconformal homeomorphism $f$ is rectifiable. We also establish estimates for the weak quasisymmetry constant of a global $K$-quasiconformal map in neighborhoods with maximal dilatation close to 1.References
- Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
- J. M. Anderson, J. Becker, and F. D. Lesley, On the boundary correspondence of asymptotically conformal automorphisms, J. London Math. Soc. (2) 38 (1988), no. 3, 453–462. MR 972130, DOI 10.1112/jlms/s2-38.3.453
- Christopher J. Bishop, Vladimir Ya. Gutlyanskiĭ, Olli Martio, and Matti Vuorinen, On conformal dilatation in space, Int. J. Math. Math. Sci. 22 (2003), 1397–1420. MR 1980177, DOI 10.1155/S0161171203110034
- G. David and T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), no. 4, 641–710. MR 1731465, DOI 10.1007/s002080050332
- Guy David and Tatiana Toro, Reifenberg parameterizations for sets with holes, Mem. Amer. Math. Soc. 215 (2012), no. 1012, vi+102. MR 2907827, DOI 10.1090/S0065-9266-2011-00629-5
- Vladimir Ya. Gutlyanskiĭ and Anatoly Golberg, On Lipschitz continuity of quasiconformal mappings in space, J. Anal. Math. 109 (2009), 233–251. MR 2585395, DOI 10.1007/s11854-009-0032-1
- Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917, DOI 10.1007/978-1-4613-0131-8
- Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15. MR 1069238, DOI 10.1007/BF01233418
- P. Mattila and M. Vuorinen, Linear approximation property, Minkowski dimension, and quasiconformal spheres, J. London Math. Soc. (2) 42 (1990), no. 2, 249–266. MR 1083444, DOI 10.1112/jlms/s2-42.2.249
- Daniel Meyer, Quasisymmetric embedding of self similar surfaces and origami with rational maps, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 461–484. MR 1922201
- Daniel Meyer, Snowballs are quasiballs, Trans. Amer. Math. Soc. 362 (2010), no. 3, 1247–1300. MR 2563729, DOI 10.1090/S0002-9947-09-04635-2
- István Prause, Flatness properties of quasispheres, Comput. Methods Funct. Theory 7 (2007), no. 2, 527–541. MR 2376688, DOI 10.1007/BF03321661
- István Prause, Xavier Tolsa, and Ignacio Uriarte-Tuero, Hausdorff measure of quasicircles, Adv. Math. 229 (2012), no. 2, 1313–1328. MR 2855095, DOI 10.1016/j.aim.2011.11.001
- E. R. Reifenberg, Solution of the Plateau Problem for $m$-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1–92. MR 114145, DOI 10.1007/BF02547186
- Yu. G. Reshetnyak, Stability theorems in geometry and analysis, Mathematics and its Applications, vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the author; Translation edited and with a foreword by S. S. Kutateladze. MR 1326375, DOI 10.1007/978-94-015-8360-2
- Steffen Rohde, Quasicircles modulo bilipschitz maps, Rev. Mat. Iberoamericana 17 (2001), no. 3, 643–659. MR 1900898, DOI 10.4171/RMI/307
- Pasi Seittenranta, Linear dilatation of quasiconformal maps in space, Duke Math. J. 91 (1998), no. 1, 1–16. MR 1487976, DOI 10.1215/S0012-7094-98-09101-3
- Stanislav Smirnov, Dimension of quasicircles, Acta Math. 205 (2010), no. 1, 189–197. MR 2736155, DOI 10.1007/s11511-010-0053-8
- Tatiana Toro, Geometric conditions and existence of bi-Lipschitz parameterizations, Duke Math. J. 77 (1995), no. 1, 193–227. MR 1317632, DOI 10.1215/S0012-7094-95-07708-4
- Jussi Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
- Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174, DOI 10.1007/BFb0077904
- Matti Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990), no. 4, 617–628. MR 1082879, DOI 10.1007/BF02571267
Additional Information
- Matthew Badger
- Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651
- MR Author ID: 962755
- Email: badger@math.sunysb.edu
- James T. Gill
- Affiliation: Department of Mathematics and Computer Science, Saint Louis University, St. Louis, Missouri 63103
- Email: jgill5@slu.edu
- Steffen Rohde
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- Email: rohde@math.washington.edu
- Tatiana Toro
- Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195-4350
- MR Author ID: 363909
- Email: toro@math.washington.edu
- Received by editor(s): January 18, 2012
- Published electronically: September 12, 2013
- Additional Notes: The first author was partially supported by NSF grant #0838212
The second author was partially supported by NSF grant #1004721
The third author was partially supported by NSF grant #0800968
The fourth author was partially supported by NSF grant #0856687 - © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 1413-1431
- MSC (2010): Primary 30C65; Secondary 28A75, 30C62
- DOI: https://doi.org/10.1090/S0002-9947-2013-05926-0
- MathSciNet review: 3145736