Deformation of Sasakian metrics
HTML articles powered by AMS MathViewer
- by Hiraku Nozawa PDF
- Trans. Amer. Math. Soc. 366 (2014), 2737-2771 Request permission
Abstract:
Deformations of the Reeb flow of a Sasakian manifold as transversely Kähler flows may not admit compatible Sasakian metrics. We show that the triviality of the $(0,2)$-component of the basic Euler class characterizes the existence of compatible Sasakian metrics for given small deformations of the Reeb flow as transversely holomorphic Riemannian flows. We also prove a Kodaira-Akizuki-Nakano type vanishing theorem for basic Dolbeault cohomology of homologically orientable transversely Kähler foliations. As a consequence of these results, we show that any small deformations of the Reeb flow of a positive Sasakian manifold admit compatible Sasakian metrics.References
- Yasuo Akizuki and Shigeo Nakano, Note on Kodaira-Spencer’s proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266–272. MR 66694
- Jesús A. Alvarez López, On Riemannian foliations with minimal leaves, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 1, 163–176 (English, with French summary). MR 1056780
- Jesús A. Alvarez López, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179–194. MR 1175918, DOI 10.1007/BF00130919
- W. L. Baily, On the imbedding of $V$-manifolds in projective space, Amer. J. Math. 79 (1957), 403–430. MR 100104, DOI 10.2307/2372689
- Florin Alexandru Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), no. 1, 1–40. MR 1760667, DOI 10.1007/s002080050357
- David E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, vol. 203, Birkhäuser Boston, Inc., Boston, MA, 2002. MR 1874240, DOI 10.1007/978-1-4757-3604-5
- Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, hypersurface singularities, and Einstein metrics, Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 57–87. MR 2152356
- Charles P. Boyer and Krzysztof Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008. MR 2382957
- Charles P. Boyer, Krzysztof Galicki, and Michael Nakamaye, On the geometry of Sasakian-Einstein 5-manifolds, Math. Ann. 325 (2003), no. 3, 485–524. MR 1968604, DOI 10.1007/s00208-002-0388-3
- Charles P. Boyer, Krzysztof Galicki, and Michael Nakamaye, On positive Sasakian geometry, Geom. Dedicata 101 (2003), 93–102. MR 2017897, DOI 10.1023/A:1026363529906
- Alberto Candel and Lawrence Conlon, Foliations. I, Graduate Studies in Mathematics, vol. 23, American Mathematical Society, Providence, RI, 2000. MR 1732868, DOI 10.1090/gsm/023
- Yves Carrière, Flots riemanniens, Astérisque 116 (1984), 31–52 (French). Transversal structure of foliations (Toulouse, 1982). MR 755161
- C. van Coevering, Stability of Sasaki-extremal metrics under complex deformations, to appear in Internat. Math. Res. Notices, DOI 10.1093/imrn/rns210
- J.-P. Demailly, Transcendental proof of a generalized Kawamata-Viehweg vanishing theorem, Geometrical and algebraical aspects in several complex variables (Cetraro, 1989) Sem. Conf., vol. 8, EditEl, Rende, 1991, pp. 81–94. MR 1222208
- Jean-Pierre Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, School on Vanishing Theorems and Effective Results in Algebraic Geometry (Trieste, 2000) ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2001, pp. 1–148. MR 1919457
- J.-P. Demailly, Complex analytic and differential geometry, Preprint (2009) available at http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
- T. Duchamp and M. Kalka, Holomorphic foliations and deformations of the Hopf foliation, Pacific J. Math. 112 (1984), no. 1, 69–81. MR 739141
- Aziz El Kacimi-Alaoui, Sur la cohomologie feuilletée, Compositio Math. 49 (1983), no. 2, 195–215 (French). MR 704391
- Aziz El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), no. 1, 57–106 (French, with English summary). MR 1042454
- A. El Kacimi-Alaoui and G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207–227 (French, with English summary). MR 865667
- Joan Girbau, Sur le théorème de Le Potier d’annulation de la cohomologie, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 6, Aiv, A355–A358. MR 430333
- J. Girbau, A. Haefliger, and D. Sundararaman, On deformations of transversely holomorphic foliations, J. Reine Angew. Math. 345 (1983), 122–147. MR 717890, DOI 10.1515/crll.1983.345.122
- Xavier Gómez-Mont, Transversal holomorphic structures, J. Differential Geometry 15 (1980), no. 2, 161–185 (1981). MR 614365
- R. Goto, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan 64, no. 3 (2012), 1005–1052.
- Hans Grauert and Oswald Riemenschneider, Kählersche Mannigfaltigkeiten mit hyper-$q$-konvexem Rand, Problems in analysis (Lectures Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 61–79 (German). MR 0355107
- André Haefliger, Some remarks on foliations with minimal leaves, J. Differential Geometry 15 (1980), no. 2, 269–284 (1981). MR 614370
- A. Haefliger, Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, Compositio Math. 55 (1985), no. 2, 241–251. MR 795716
- Yoji Hatakeyama, Some notes on differentiable manifolds with almost contact structures, Tôhoku Math. J. (2) 15 (1963), 176–181. MR 0150718, DOI 10.2748/tmj/1178243844
- G. Hector, E. Macías, and M. Saralegi, Lemme de Moser feuilleté et classification des variétés de Poisson régulières, Publ. Mat. 33 (1989), no. 3, 423–430 (French, with English summary). MR 1038481, DOI 10.5565/PUBLMAT_{3}3389_{0}4
- Franz W. Kamber and Philippe Tondeur, Duality for Riemannian foliations, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 609–618. MR 713097
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original; A Wiley-Interscience Publication. MR 1393940
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328–466. MR 112154, DOI 10.2307/1970009
- K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III. Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43–76. MR 115189, DOI 10.2307/1969879
- Xosé Masa, Duality and minimality in Riemannian foliations, Comment. Math. Helv. 67 (1992), no. 1, 17–27. MR 1144611, DOI 10.1007/BF02566486
- Maung Min-Oo, Ernst A. Ruh, and Philippe Tondeur, Vanishing theorems for the basic cohomology of Riemannian foliations, J. Reine Angew. Math. 415 (1991), 167–174. MR 1096904
- Pierre Molino, Riemannian foliations, Progress in Mathematics, vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988. Translated from the French by Grant Cairns; With appendices by Cairns, Y. Carrière, É. Ghys, E. Salem and V. Sergiescu. MR 932463, DOI 10.1007/978-1-4684-8670-4
- Pierre Molino and Vlad Sergiescu, Deux remarques sur les flots riemanniens, Manuscripta Math. 51 (1985), no. 1-3, 145–161 (French, with English summary). MR 788676, DOI 10.1007/BF01168350
- H. Nozawa, Continuity of the Álvarez class under deformations, J. Reine Angew. Math. 673 (2012), 125–159.
- Liviu Ornea and Misha Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett. 10 (2003), no. 5-6, 799–805. MR 2024735, DOI 10.4310/MRL.2003.v10.n6.a7
- Liviu Ornea and Misha Verbitsky, Locally conformal Kähler manifolds with potential, Math. Ann. 348 (2010), no. 1, 25–33. MR 2657432, DOI 10.1007/s00208-009-0463-0
- José Ignacio Royo Prieto, The Euler class for Riemannian flows, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 1, 45–50 (English, with English and French summaries). MR 1805626, DOI 10.1016/S0764-4442(00)01770-5
- Hansklaus Rummler, Quelques notions simples en géométrie riemannienne et leurs applications aux feuilletages compacts, Comment. Math. Helv. 54 (1979), no. 2, 224–239 (French). MR 535057, DOI 10.1007/BF02566270
- M. Saralegui, The Euler class for flows of isometries, Differential geometry (Santiago de Compostela, 1984) Res. Notes in Math., vol. 131, Pitman, Boston, MA, 1985, pp. 220–227. MR 864872
- Dennis Sullivan, A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), no. 2, 218–223. MR 535056, DOI 10.1007/BF02566269
- Tsutomu Yamazaki, A construction of $K$-contact manifolds by a fiber join, Tohoku Math. J. (2) 51 (1999), no. 4, 433–446. MR 1725620, DOI 10.2748/tmj/1178224713
Additional Information
- Hiraku Nozawa
- Affiliation: Institut des Hautes Études Scientifiques, Le Bois-Marie 35, Route de Chartres 91440 Bures-sur-Yvette, France
- Address at time of publication: Department of Mathematical Sciences, Faculty of Science and Engineering, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 526-8755, Japan
- Email: nozawahiraku@06.alumni.u-tokyo.ac.jp
- Received by editor(s): September 15, 2010
- Received by editor(s) in revised form: October 6, 2011, and October 3, 2012
- Published electronically: November 5, 2013
- Additional Notes: The author was partially supported by Grant-in-Aid for JSPS Fellows (19-4609) and Postdoctoral Fellowship of French government (662014L)
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 2737-2771
- MSC (2010): Primary 32G07; Secondary 53C25
- DOI: https://doi.org/10.1090/S0002-9947-2013-06020-5
- MathSciNet review: 3165654