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THE GENERATOR PROBLEM FOR Z-STABLE C∗-ALGEBRAS

HANNES THIEL AND WILHELM WINTER

Abstract. The generator problem was posed by Kadison in 1967, and it re-
mains open today. We provide a solution for the class of C∗-algebras absorbing
the Jiang-Su algebra Z tensorially. More precisely, we show that every unital,
separable, Z-stable C∗-algebra A is singly generated, which means that there
exists an element x ∈ A that is not contained in any proper sub-C∗-algebra of
A.

To give applications of our result, we observe that Z can be embedded into
the reduced group C∗-algebra of a discrete group that contains a non-cyclic,
free subgroup. It follows that certain tensor products with reduced group
C∗-algebras are singly generated. In particular, C∗

r (F∞) ⊗ C∗
r (F∞) is singly

generated.

1. Introduction

By an operator algebra we mean a ∗-subalgebra of B(H) that is either closed in
the norm topology (a concrete C∗-algebra) or the weak operator topology (a von
Neumann algebra). One way of realizing an operator algebra is to take a subset of
B(H) and consider the smallest operator algebra containing it.

In a trivial way, every operator algebra can be obtained this way. The situation
becomes interesting if one imposes restrictions on the generating set, and one nat-
ural possibility is to require that it consists of only one element, i.e., to consider
operator algebras that are generated by a single operator. It is an old problem to
determine which operator algebras arise this way.

More generally, one tries to compute the minimal number of elements that gen-
erate a given operator algebra; see Section 2.1. It is often convenient to consider
self-adjoint generators. Note that two self-adjoint elements a, b generate the same
operator algebra as the element a+ ib. Thus, if we ask whether an operator algebra
is singly generated, it is equivalent to ask whether it is generated by two self-adjoint
elements.

In the case of von Neumann algebras, the generator problem was included in
Kadison’s famous ‘Problems on von Neumann algebras’, [Kad67]. This problem
list has turned out to be very influential, yet its original form remains unpublished.
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It is indirectly available in an article by Ge, [Ge03], where a brief summary of the
developments around Kadison’s famous problems is given.

Question 1.1 (Kadison, [Kad67, Problem 14], see also [Ge03]). Is every separably-
acting1 von Neumann algebra singly generated?

As noted in [She09], there exist singly generated von Neumann algebras that
are not separably-acting. However, the separably-acting von Neumann algebras
are the natural class for which one might expect single generation. The answer to
Question 1.1 is still open in general, but many authors have contributed to show
that large classes of separably-acting von Neumann algebras are singly generated.

We just mention an incomplete list of results. It starts with von Neumann,
[vN31], who showed that the abelian operator algebras named after him are gener-
ated by a single self-adjoint element, thus implicitly raising the generator problem.
Some thirty years later, this was extended by Pearcy, [Pea62], who showed that all
von Neumann algebras of type I are singly generated. Then Wogen, [Wog69, Theo-
rem 2], proved that all properly infinite von Neumann algebras are singly generated,
thus reducing the generator problem to the type II1 case.

Later, this was further reduced to the case of a II1-factor by Willig, [Wil74], and
then to the case of a finitely generated II1-factor by Sherman, [She09, Theorem
3.8]. This means that Question 1.1 has a positive answer if every separably-acting,
finitely generated II1-factor is singly generated.

There are many properties known to imply that a II1-factor is singly generated.
We just mention that Ge and Popa, [GP98, Theorem 6.2], show that every tenso-
rially non-prime2 II1-factor is singly generated. Our main result, Theorem 3.5, can
be considered as a partial C∗-algebraic analog of this result.

Let us also mention that the free group factors W ∗(Fk) are the outstanding ex-
amples of separably-acting von Neumann algebra for which it is not known whether
they are singly generated.

In the case of C∗-algebras, the generator problem is more subtle. There is
already no obvious class of C∗-algebras for which one conjectures that they are
singly generated. Every singly generated C∗-algebra is separable.3 However, the
converse is false, and counterexamples can be found among the commutative C∗-
algebras.

In fact, the C∗-algebra C0(X) is generated by n self-adjoint elements if and only
if X can be embedded into Rn. Thus, C0(X) is singly generated if and only if X is
planar, i.e., can be embedded into the plane R2.

It is easy to see that a C∗-algebra A is generated by n self-adjoint elements if and

only if its minimal unitization Ã is generated by n self-adjoint elements. Therefore,
we will mostly consider the generator problem for separable, unital C∗-algebra. In
that case, taking the tensor product with a matrix algebra has the effect of reducing
the necessary number of generators. If A is generated by n2+1 self-adjoint elements,
then A⊗Mn is singly generated; see e.g. [Nag04, Theorem 3].

One derives the principle that a C∗-algebra needs less generators if it is ‘more
non-commutative’. Consequently, one might expect a (separable) C∗-algebra to be

1A von Neumann algebra is called ‘separably-acting’, or just ‘separable’, if it is a subalgebra
of B(l2N), or equivalently if it has a separable predual.

2A II1-factor M is called tensorially non-prime if it is isomorphic to a tensor product, M1⊗̄M2,
of two II1-factors M1,M2.

3A C∗-algebra is called ‘separable’ if it contains a countable, norm-dense subset.
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singly generated if it is ‘maximally non-commutative’. As a non-unital instance
of this principle, we note that the stabilization, A ⊗ K, of a separable unital C∗-
algebra A is singly generated, [OZ76, Theorem 8]. In the unital case, there are
at least three natural cases when one considers a C∗-algebra A to be ‘maximally
non-commutative’, which are the following:

(1) A contains a simple, unital, non-elementary sub-C∗-algebra,
(2) A contains a sequence of pairwise orthogonal, full elements,
(3) A has no finite-dimensional irreducible representations.

In general, the implications (1) ⇒ (2) ⇒ (3) hold; it is not known if the converses
are true.

Conditions (2) and (3) can also be considered for possibly non-unital C∗-alge-
bras, and we let (2∗) be the weaker statement that A contains two orthogonal, full
elements. The implication ‘(3) ⇒ (2)’ holds exactly if the implication ‘(3) ⇒ (2∗)’
holds.

The Global Glimm halving problem asks the following: Given a (possibly non-
unital) C∗-algebra A that satisfies condition (3), does there exist a full map from the
cone over M2 to A? It is not known whether the Global Glimm halving problem
has a positive answer, but if it does, then it shows that implication ‘(3) ⇒ (2)’
holds, since the cone over M2 contains two orthogonal, full elements.

Let us remark that the analogs of conditions (1)− (3) for von Neumann algebras
are all equivalent. In fact, if a von Neumann algebra M has no finite-dimensional
representations, then the hyperfinite II1-factor R unitally embeds into M .

Historically, the generator problem for C∗-algebras is mostly asked for C∗-alge-
bras that are simple or more generally have no finite-dimensional representations:

Question 1.2. Is every simple, separable, unital C∗-algebra singly generated?

Question 1.3. Is a separable, unital C∗-algebra singly generated provided it has
no finite-dimensional irreducible representations?

The answers to both questions are open. A positive answer to Question 1.3
implies a positive answer to Question 1.2, of course. The converse is not clear.

Let us mention some results that solve the generator problem for particular
classes of separable C∗-algebras. It was shown by Topping, [Top68], that every
UHF-algebra is singly generated. This was generalized by Olsen and Zame, [OZ76,
Theorem 9], who showed that the tensor product, A⊗ B, of any separable, unital
C∗-algebra A with a UHF-algebra B is singly generated.

Later, it was shown by Li and Shen, [LS10, Theorem 3.1], that every unital,
approximately divisible4 C∗-algebra is singly generated. This generalizes the re-
sult of Olsen and Zame, since the tensor product with a UHF-algebra is always
approximately divisible.

In this article we prove that every separable, unital, Z-stable C∗-algebra is singly
generated; see Theorem 3.8. This generalizes the result of Li and Shen, since every
approximately divisible C∗-algebra is Z-stable; see [TW08, Theorem 2.3]. The
notion of Z-stability has proven to be very important in the classification program
of nuclear C∗-algebras (see e.g. [Win07] or [ET08]), and it is has been shown that
many nuclear, simple C∗-algebras are Z-stable (see e.g. [Win12]). Z-stability is

4A unital C∗-algebra A is ‘approximately divisible’ if for every ε > 0 and finite subset F ⊂ A
there exists a finite-dimensional, unital sub-C∗-algebra B ⊂ A such that B has no characters and
‖xb− bx‖ ≤ ε‖b‖ for all x ∈ F, b ∈ B.
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also relevant in the non-nuclear context; for example, unital Z-stable C∗-algebras
satisfy Kadison’s similarity property (see [JW11]).

Let us indicate a few applications of single generation and consequences of a
positive answer to the generator problem.

First, it is often easy to prove ‘local-to-global’ results for maps whose domain is
a singly generated operator algebra, where the meaning of ‘local’ is that the map
has a certain property when considered on each element individually. For instance,
Sherman studied locally inner5 automorphisms of operator algebras, [She10], and he
shows that every such automorphism on a separably-acting von Neumann algebra
is inner. Since every locally inner automorphism is easily seen to be inner on a
singly generated operator algebra, a positive answer to the generator problem for
von Neumann algebras would provide a quick proof of Sherman’s result.

Another interest into the generator problem comes from descriptive set theory,
which was successfully used in the last few years to study the complexity of clas-
sification problems of certain classes of operator algebras. We refer the reader to
[FTT11] and the references therein. To apply the methods of descriptive set theory
one needs to parametrize the class of studied objects.

If H is a separable, infinite-dimensional Hilbert space, then the Borel structure
coming from the weak topology makes B(H) into a standard Borel space. This pro-
vides a natural parametrization of singly generated operator algebras by assigning
to every operator x ∈ B(H) the operator algebra it generates in B(H). (One may
parametrize general countably generated algebras by considering the Borel space
of sequences in B(H).)

Lastly, let us mention that it was shown in [DSSW08] that the generator prob-
lem is connected to the famous free factor problem, which asks whether the free
group factors W ∗(Fk) are isomorphic for different k. More precisely, the following
dichotomy was shown: Either all free group factors are singly generated, or W ∗(Fk)
is not singly generated for some k (which then implies that the free group factors
are pairwise non-isomorphic). So far, it is not known which of the two possibilities
occurs.

This paper proceeds as follows:
In Section 2, we set up our notation and give some basic facts about the mini-

mal number of self-adjoint generators (see Subsection 2.1) and C0(X)-algebras (see
Subsection 2.5).

Section 3 contains the proof of our main result, which states that the tensor
product A ⊗max B of two separable, unital C∗-algebras is singly generated, if A
satisfies condition (2) from above (e.g. A is simple and non-elementary) and B
admits a unital embedding of the Jiang-Su algebra Z; see Theorem 3.5.

We derive that every separable, unital, Z-stable C∗-algebra is singly generated;
see Theorem 3.8. Our main result can be considered as a (partial) C∗-algebraic
analog of a theorem of Ge and Popa, [GP98, Theorem 6.2], which shows that a
tensor product, M⊗̄N , of two II1-factors M,N is singly generated. In fact, we can
reprove their theorem with our methods; see Corollary 3.12.

In Section 4, we give further applications of our main theorem to tensor prod-
ucts with reduced group C∗-algebras. We first observe that Z embeds unitally into

5An automorphism α of a (unital) operator algebra A is called locally inner if for each element
it agrees with an inner automorphism, i.e., if for every element a ∈ A there exists a unitary ua

such that α(a) = uaau∗
a.
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C∗
r (F∞), the reduced group C∗-algebra of the free group on infinitely many gener-

ators; see Subsection 4.1. Consequently, if a discrete group Γ contains a non-cyclic
free subgroup, then Z embeds unitally into C∗

r (Γ); see Proposition 4.2.
We deduce that tensor products of the form A⊗max C

∗
r (Γ) are singly generated

if A is a separable, unital C∗-algebra satisfying condition (2) from above, and Γ
is a group containing a non-cyclic free subgroup; see Corollary 4.4. For example,
C∗

r (F∞) ⊗ C∗
r (F∞) is singly generated, although this C∗-algebra is not Z-stable;

see Example 4.5.

2. Preliminaries

By a morphism between C∗-algebras we mean a ∗-homomorphism, and by an
ideal of a C∗-algebra we understand a closed, two-sided ideal. If A is a C∗-algebra,

then we denote by Ã its minimal unitization. Often, we write Mk for the C∗-algebra
of k-by-k matrices Mk(C).

2.1. Let A be a C∗-algebra, and Asa ⊂ A the subset of self-adjoint elements. We
say that a set S ⊂ Asa generates A, denoted A = C∗(S), if the smallest sub-C∗-al-
gebra of A containing S is A itself. We denote by gen(A) the minimal number of
self-adjoint generators, i.e., gen(A) the smallest number n ∈ {1, 2, 3, . . . ,∞} such
that A contains a generating subset S ⊂ Asa of cardinality n.

We stress that for the definition of gen(A), the generators are assumed to be
self-adjoint. Two self-adjoint elements a, b generate the same C∗-algebra as the
(non-self-adjoint) element a + ib. Therefore, a C∗-algebra A is said to be singly
generated if gen(A) ≤ 2.

For more details on the minimal number of self-adjoint generators we refer the
reader to Nagisa, [Nag04], where the following facts are also noted for C∗-algebras
A and B:

(1) gen(Ã) = gen(A),
(2) gen(C∗(A,B)) ≤ gen(A) + gen(B), if A,B are sub-C∗-algebras of a common

C∗-algebra, and where C∗(A,B) denotes the sub-C∗-algebra they generate
together,

(3) gen(A⊕B) = max{gen(A), gen(B)} if at least one of the algebras is unital,

(4) gen(A ⊗Mn) ≤
⌈
gen(A)−1

n2

⌉
, if A is unital and n ∈ N, and where 	t
 denotes

the smallest natural number that is larger than or equal to t ∈ R.

Let I � A be an ideal in a C∗-algebra A. It is easy to see that the minimal
number of self-adjoint generators of A dominates that of the quotient A/I, i.e.,
gen(A/I) ≤ gen(A), and the minimal number of self-adjoint generators of A can be
estimated as gen(A) ≤ gen(I) + gen(A/I). The following result gives an estimate
for gen(I), and it is probably well-known to experts; since we could not locate it in
the literature, we include a short proof.

Proposition 2.2. Let A be a C∗-algebra, and let I�A be an ideal. Then gen(I) ≤
gen(A) + 1.

Proof. We may assume gen(A) is finite. So let a1, . . . , ak be a set of self-adjoint
generators for A. Then A and I are separable, and so I contains a strictly positive
element h. It follows that C∗(h) contains a quasi-central approximate unit; see
[AP77, Corollary 3.3] and [Arv77]. It is straightforward to show that I is generated
by the k + 1 elements h, ha1h, . . . , hakh. �
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Remark 2.3. Let A be a C∗-algebra, and I � A an ideal. By the above result,
gen(I) ≤ gen(A)+1, and in general this is the best possible estimate. For example,
if A = C0([0, 1)) and I = C0((0, 1)), then gen(A) = 1 and gen(I) = 2. More
generally, examples with gen(A) = k and gen(I) = k + 1 can easily be constructed
for every k.

The following result is attributed to Kirchberg in [Nag04].

Theorem 2.4 (Kirchberg). Every separable, unital, properly infinite C∗-algebra is
singly generated.

Proof. We sketch a proof based on the proof of [OZ76, Theorem 9]. Let A be a sep-
arable, unital, properly infinite C∗-algebra. Then there exist isometries s1, s2, . . . ∈
A with pairwise orthogonal ranges (i.e., A contains a unital copy of the Cuntz
algebra O∞).

Let a1, a2, . . . ∈ A be a sequence of (positive) generators for A such that their
spectra satisfy σ(ak) ⊂ [1/2 · 1/4k, 1/4k]. A generator for A is given by

x :=
∑
k≥1

(skaks
∗
k + 1/2ksk).

As in in the proof of [OZ76, Theorem 9], one can show that the spectrum of x
satisfies

σ(x) ⊂ {0} ∪
⋃
k≥1

[1/2 · 1/4k, 1/4k].

Let B := C∗(x) ⊂ A. Proceeding inductively, one shows that ak, sk ∈ B. We
only sketch this for k = 1. Set p := s1s

∗
1. Let fn be a sequence of polynomials

converging uniformly to 1 on [1/8, 1/4] and to 0 on [0, 1/16]. Then fn(x) converges
to an element y ∈ B of the form y = p + pb(1 − p) for some b ∈ A. We compute
yy∗ = p(1A+ b(1−p)b∗)p. Then for a continuous function f : R → R with f(0) = 0
and f(t) = 1 for t ≥ 1, we get f(yy∗) = p ∈ B. Then s1a1s

∗
1 = pxp ∈ B and

s1 = 2 · px(1− p) ∈ B, and then also a1 ∈ B. �

2.5. Let X be a locally compact, σ-compact, Hausdorff space. A C0(X)-algebra
is a C∗-algebra A together with a morphism η : C0(X) → Z(M(A)), from the
commutative C∗-algebra C0(X) to the center of the multiplier algebra of A, such
that for any approximate unit (uλ)Λ of C0(X), η(uλ)a → a for any a ∈ A, or
equivalently, the closure of η(C0(X))A is all of A. Thus, if X is compact, then η
is necessarily unital. We will usually suppress reference to the structure map, and
simply write fa or f · a instead of η(f)a for the product of a function f ∈ C0(X)
and an element a ∈ A.

Let Y ⊂ X be a closed subset, and U := X \Y its complement (an open subset).
Then C0(U) ·A is an ideal of A, denoted by A(U). The quotient A/A(U) is denoted
by A(Y ).

Given a point x ∈ X, we write A(x) for A({x}), and we call this C∗-algebra
the fiber of A at x. For an element a ∈ A, we denote by a(x) the image of a in
the fiber A(x). For each a ∈ A, we may consider the map ǎ : x �→ ‖a(x)‖. This
is a real-valued, upper-semicontinuous function on X, vanishing at infinity. The
C0(X)-algebra A is called continuous if ǎ is a continuous function for each a ∈ A.

For more information on C0(X)-algebras we refer the reader to [Kas88, §1] or
the more recent [Dad09, §2].
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2.6. The Jiang-Su algebra Z was constructed in [JS99]; it may be regarded as a C∗-
algebraic analog of the hyperfinite II1-factor. It can be obtained as an inductive
limit of prime dimension drop algebras Zp,q := {f : [0, 1] → Mp ⊗ Mq | f(0) ∈
1p ⊗Mq, f(1) ∈ Mp ⊗ 1q}.

For more details, we refer the reader to [Win11], where Z is characterized in an
entirely abstract manner, and to [Rør04] and [RW10], where it is shown that the
generalized dimension drop algebra Z2∞,3∞ := {f : [0, 1] → M2∞ ⊗ M3∞ | f(0) ∈
1⊗M3∞ , f(1) ∈ M2∞ ⊗ 1} embeds unitally into Z; in fact, Z can be written as a
stationary inductive limit of Z2∞,3∞ .

3. Results

Lemma 3.1. Let A be a separable, unital C∗-algebra. Then gen(A⊗Z2∞,3∞) ≤ 5.

Proof. Consider the ideal I := A ⊗ C0(0, 1) ⊗ M6∞ in B := A ⊗ Z2∞,3∞ . The
quotient B/I is isomorphic to (A ⊗ M2∞) ⊕ (A ⊗ M3∞). Thus, we have a short
exact sequence:

A⊗ C0(0, 1)⊗M6∞
�� A⊗Z2∞,3∞

�� (A⊗M2∞)⊕ (A⊗M3∞) .

It follows from [OZ76] that the tensor product of a unital, separable C∗-al-
gebra with a UHF-algebra is singly generated. In particular, gen(A ⊗ M2∞),
gen(A ⊗ M3∞) ≤ 2. Thus, using the results stated in Subsection 2.1, the quo-
tient satisfies

gen(B/I) = max{gen(A⊗M2∞), gen(A⊗M3∞)} ≤ 2.

Note that I is an ideal in the C∗-algebra C := A ⊗ C(S1) ⊗ M2∞ . We have
gen(C) ≤ 2, and then gen(I) ≤ gen(C) + 1 ≤ 3, by Proposition 2.2. Then, the
extension is generated by at most 2 + 3 = 5 self-adjoint elements. �

The following Lemma 3.2 is a Stone-Weierstrass type result for C0(X)-algebras.
We prove it using the factorial Stone-Weierstrass conjecture, which was shown for
separable C∗-algebras independently by Longo, [Lon84], and Popa, [Pop84].

Given a C∗-algebra A, we denote the space of factorial states on A by F (A). If
A is unital, then the factorial Stone-Weierstrass conjecture states that a sub-C∗-
algebra B ⊂ A exhausts A if it contains the unit of A and separates F (A). If A is
non-unital, then the conjecture states that a sub-C∗-algebra B ⊂ A exhausts A if
it separates F (A) ∪ {0}.

See Subsection 2.5 for a short introduction to C0(X)-algebras.

Lemma 3.2. Let A be a separable C0(X)-algebra, and let B ⊂ A be a sub-C∗-al-
gebra such that the following two conditions are satisfied:

(i) For each x ∈ X, B exhausts the fiber A(x),
(ii) B separates the points of X by full elements, i.e., for each pair of distinct

points x0, x1 ∈ X there exists some b ∈ B such that b(x1) is full in A(x1) and
b(x0) = 0.

Then A = B.
Condition (ii) is for instance satisfied if B contains the image of the structure

map η : C0(X) → Z(M(A)).
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Proof. Set Y := Prim(Z(M(A))), and identify Z(M(A)) with C(Y ). Let π : A →
B(H) be a non-degenerate factor representation. Then π extends to a represen-
tation π̃ : M(A) → B(H). It is straightforward to show π(A)′′ = π̃(M(A))′′,
so that π̃ is a factor representation of M(A). For any c ∈ Z(M(A)), we have
c ∈ π(A)′ ∩ π̃(M(A))′′ = C · 1H . Thus, there exists a point y ∈ Y such that
π̃(c) = c(y) ·1H for all c ∈ Z(M(A)). Since η(C0(X)) contains an approximate unit
for A, we have that π̃ ◦ η is non-zero. Thus, there exists a point x ∈ X such that
π̃ ◦ η(f) = f(x) · 1H for all f ∈ C0(X). This means that π̃ ◦ η vanishes on the ideal
A(X \ {x}), so that π factors through the fiber A(x).

It follows easily from condition (i) that B separates {0} and F (A). To show
that B separates F (A), let ϕ1, ϕ2 be two different, non-degenerate factor states of
A. We have shown above that there are two points x1, x2 ∈ X such that ϕi factors
through A(xi), and we denote by ϕ̄i : A(xi) → C the induced factor state on A(xi),
for i = 1, 2. We distinguish two cases:

Case 1: x1 = x2. In this case, since ϕ1 �= ϕ2, there exists an element a ∈ A such
that ϕ1(a) �= ϕ2(a). By condition (i), there exists some element b ∈ B such that
b(x1) = a(x1). Note that for i = 1, 2 we have

ϕi(b) = ϕ̄i(b(x1)) = ϕ̄i(a(x1)) = ϕi(a).

Thus, b separates the two states.

Case 2: x1 �= x2. In this case, by condition (ii), there exists an element b ∈ B such
that b(x2) is full in A(x2) and b(x1) = 0. Since ϕ2 �= 0, there exists an element
a ∈ A such that |ϕ2(a)| = |ϕ̄2(a(x2))| ≥ 1.

Since b(x2) is full, there exist finitely many elements gi, hi ∈ A(x2) such that

‖a(x2) −
∑

i cib(x2)di‖ < 1. By condition (i), there exist elements g̃i, h̃i ∈ B such

that g̃i(x2) = gi and h̃i(x2) = hi. Set b
′ :=

∑
i c̃ibd̃i. Then |ϕ2(b

′)| = |ϕ̄2(b
′(x2))| >

0, while b′(x1) = 0. This shows that b′ separates the two states.
We have shown that B separates F (A)∪{0}, and therefore B = A by the factorial

Stone-Weierstrass conjecture. �

Lemma 3.3. Let A be a unital C∗-algebra with gen(A) ≤ 3. Then there exist a
positive element x ∈ A⊗Z2,3 and two positive, full elements y′, z′ ∈ Z2,3 such that
A⊗Z2,3 is generated by x and 1⊗ y′, and further y′ and z′ are orthogonal.

Proof. We consider Z2,3 as the C∗-algebra of continuous functions from [0, 1] to M6

with the boundary conditions

f(0) =

⎛
⎝Y

Y
Y

⎞
⎠ f(1) =

(
Z

QZQ∗

)
,

where Y ∈ M2 and Z ∈ M3 are arbitrary matrices, and Q ∈ M3 is the following
fixed permutation matrix:

Q =

⎛
⎝ 1
1

1

⎞
⎠ .
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This means that f(0), f(1) ∈ M6 have the following form:

f(0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ11 μ12

μ21 μ22

μ11 μ12

μ21 μ22

μ11 μ12

μ21 μ22

⎞
⎟⎟⎟⎟⎟⎟⎠

f(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ22 λ33

λ33 λ31 λ32

λ13 λ11 λ12

λ23 λ21 λ22

⎞
⎟⎟⎟⎟⎟⎟⎠

,

for numbers μi,j , λi,j ∈ C.
Note that Z2,3 is naturally a continuous C([0, 1])-algebra, with fibers Z2,3(0) ∼=

M2, Z2,3(1) ∼= M3, and Z2,3(t) ∼= M6 for points t ∈ (0, 1) ⊂ [0, 1].
Let a, b, c ∈ A be a set of invertible, positive generators for A. Denote by ei,j

the matrix units in M6. To shorten notation, for indices i, j set fi,j := ei,j + ej,i.
For t ∈ [0, 1] we define the following element of A⊗M6:

xt :=a⊗ (e1,1 + (1− t) · e3,3 + e5,5)

+b⊗ (f1,2 + (1− t) · f3,4 + f5,6)

+c⊗ (e2,2 + (1− t) · e4.4 + e6,6)

+1A ⊗ (t · f2,3 + t · f4,5 + δ(t) · f1,3),

where δ : [0, 1] → [0, 1] is a continuous function on [0, 1] that takes the value 0 at
the endpoints 0 and 1, and is strictly positive at each point t ∈ (0, 1), e.g., δ could
be given by δ(t) = 1/4 − (t − 1/2)2. We also define for t ∈ [0, 1] two elements of
M6:

y′t :=e1,1 + (1− t) · e3,3 + e5,5,

z′t :=e2,2 + (1− t) · e4,4 + e6,6.

It is easy to check that the assignment x : t �→ xt defines an element x ∈ A⊗Z2.3.
Similarly, we get two elements y′, z′ ∈ Z2.3 defined via t �→ y′t and t �→ z′t. In matrix
form, these elements look as follows:

xt :=

⎛
⎜⎜⎜⎜⎜⎜⎝

a b δ(t)
b c t

δ(t) t (1− t)a (1− t)b
(1− t)b (1− t)c t

t a b
b c

⎞
⎟⎟⎟⎟⎟⎟⎠

,

y′t :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

(1− t)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, z′t :=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

(1− t)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Set y := 1⊗y′, and let D := C∗(x+1, y) be the sub-C∗-algebra of E := A⊗Z2,3

generated by the two self-adjoint elements x + 1 and y. Since x ≥ 0, we get that
both 1 and x lie in C∗(x+1). It follows that D = C∗(1, x, y), and we will show that
D = E. Note that E has a natural continuous C([0, 1])-algebra structure (induced
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by the one of Z2,3), with fibers E(0) ∼= A⊗M2, E(1) ∼= A⊗M3, and E(t) ∼= A⊗M6

for points t ∈ (0, 1) ⊂ [0, 1].
Let J := E((0, 1))�E be the natural ideal corresponding to the open set (0, 1) ⊂

[0, 1]. Note that J ∼= A⊗C0((0, 1))⊗M6, and J is naturally a continuous C0((0, 1))-
algebra. We will show in two steps that D exhausts the ideal J (i.e., D ∩ J = J)
and the quotient E/J (i.e., D/(D ∩ J) = E/J).

Step 1. We want to apply Lemma 3.2 to the C((0, 1))-algebra J with sub-C∗-al-
gebra D ∩ J . To verify condition (ii), note that the C∗-algebra generated by y′

contains C0((0, 1))⊗ e3,3. Therefore, D ∩ J contains 1A ⊗ C0((0, 1))⊗ e3,3, which
separates the points of (0, 1). Since 1A ⊗ e3,3 ∈ E(t) ∼= A ⊗ M6 is full, condition
(ii) of Lemma 3.2 holds, and it remains to verify condition (i).

We need to show that D ∩ J exhausts all fibers of J . Fix some t ∈ (0, 1), and
set Dt := C∗(1, xt, yt) ⊂ A⊗M6. To simplify notation, we write ēi,j for the matrix
units 1A ⊗ ei,j ∈ A ⊗ M6. We need to show that Dt is all of A ⊗ M6. This will
follow if Dt contains all ēi,j , and for this it is enough to show that the off-diagonal
matrix units ēi,i+1 are in Dt, for i = 1, . . . , 5.

The spectrum of yt is {0, 1− t, 1}. Applying functional calculus to yt we obtain
that the following three elements lie in Dt:

u := ē1,1 + ē5,5,

v := ē3,3,

w := 1− v − u = ē2,2 + ē4,4 + ē6,6.

Then, we proceed as follows:

1. ē1,3 = δ(t)−1uxtv ∈ Dt, and so ē1,1, ē5,5 ∈ Dt.

2. g := b ⊗ e1,2 = ē1,1xtw ∈ Dt. It follows that b ⊗ e1,1 = (gg∗)1/2 ∈ Dt; cf.
[OZ76]. Then b−1 ⊗ e1,1 ∈ C∗(b⊗ e1,1) ⊂ Dt, and so ē1,2 = (b−1 ⊗ e1,1) · g ∈ Dt

and ē2,2 ∈ Dt.
3. b ⊗ e3,4 = (1 − t)−1ē3,3xt(w − ē2,2) ∈ Dt. Arguing as above, it follows that

ē3,4 ∈ Dt, and then ē4,4, ē6,6 ∈ Dt.
4. ē2,3 = t−1ē2,2xtē3,3 ∈ Dt.
5. ē4,5 = t−1ē4,4xtē5,5 ∈ Dt.
6. b⊗ e5,6 = ē5,5xtē6,6 ∈ Dt, and so ē5,6 ∈ Dt.

This shows that D ∩ J exhausts the fibers of J . We may apply Lemma 3.2 and
deduce D ∩ J = J , which finishes Step 1.

Step 2. We want to show that D/J exhausts E/J = E({0, 1}) ∼= A⊗ (M2 ⊕M3).

Let us denote the matrix units in M2 by e
(0)
i,j , i = 1, 2, and the matrix units in

M3 by e
(1)
i,j , i = 1, 2, 3. To simplify notation, we write ē

(k)
i,j for the matrix units

1A⊗ e
(k)
i,j ∈A⊗ (M2⊕M3). Let us denote the image of x and y in D/J by v and w:

v = a⊗ (e
(0)
1,1 + e

(1)
1,1) + b⊗ (e

(0)
1,2 + e

(0)
2,1 + e

(1)
1,2 + e

(1)
2,1) + c⊗ (e

(0)
2,2 + e

(1)
2,2) + ē

(1)
2,3 + ē

(1)
3,2

=

(
a b
b c

)
⊕

⎛
⎝a b
b c 1

1

⎞
⎠ ,

w = ē
(0)
1,1 + ē

(1)
1,1 =

(
1 0
0 0

)
⊕

⎛
⎝1

0
0

⎞
⎠ .
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As in Step 1, it is enough to show that D/J contains the off-diagonal matrix units

ē
(0)
1,2, ē

(1)
1,2 and ē

(1)
2,3. We argue as follows:

1. g := wv(1 − w) = b ⊗ (e
(0)
1,2 + e

(1)
1,2) ∈ D/J . As in Step 1, it follows that

b ⊗ (e
(0)
1,1 + e

(1)
1,1) = (gg∗)1/2 ∈ D/J . Then b−1 ⊗ (e

(0)
1,1 + e

(1)
1,1) ∈ D/J , and so

ē
(0)
1,2 + ē

(1)
1,2 = (b−1 ⊗ (e

(0)
1,1 + e

(1)
1,1)) · g ∈ D/J . It follows that ē

(0)
2,2 + ē

(1)
2,2 ∈ D/J .

2. ē
(1)
3,3 = 1− w − (ē

(0)
2,2 + ē

(1)
2,2) ∈ D/J .

3. ē
(1)
2,3 = vē

(1)
3,3 ∈ D/J , and so ē

(1)
2,2 ∈ D/J .

4. b⊗ e
(1)
1,2 = wvē

(1)
2,2 ∈ D/J . Again, this implies ē

(1)
1,2 ∈ D/J , and so ē

(1)
1,1 ∈ D/J .

5. ē
(0)
1,1 = w − ē

(1)
1,1 ∈ D/J .

6. ē
(0)
2,2 = 1− w − ē

(1)
2,2 − ē

(1)
3,3 ∈ D/J .

7. b⊗ e
(0)
1,2 = ē

(0)
1,1vē

(0)
2,2 ∈ D/J . Again, this implies ē

(0)
1,2 ∈ D/J .

This finishes Step 2.

We have seen that A ⊗ Z2,3 is generated by x + 1 and y. Moreover, z′ is full,
positive and orthogonal to y′. �
Lemma 3.4. Let A be a separable, unital C∗-algebra. Then there exist a positive
element x ∈ A ⊗ Z2∞,3∞ and two positive, full elements y′, z′ ∈ Z2∞,3∞ such that
A⊗Z2∞,3∞ is generated by x and y := 1⊗ y′, and further y′ and z′ are orthogonal.

Proof. Let B := A⊗Z2∞,3∞ . Note that Z2∞,3∞⊗Z2,3 is naturally a C([0, 1]×[0, 1])-
algebra. Then, the quotient corresponding to the diagonal {(t, t)|t ∈ [0, 1]} ⊂ [0, 1]×
[0, 1] is isomorphic to Z2∞,3∞ , and we denote the resulting surjective morphism by
π : Z2∞,3∞ ⊗Z2,3 → Z2∞,3∞ . We proceed in two steps.

Step 1. We show that gen(B) ≤ k + 1 implies gen(B) ≤ k for k ≥ 2. So assume B
is generated by the self-adjoint, invertible elements a1, . . . , ak+1. The sub-C∗-alge-
bra C := C∗(ak−1, ak, ak+1) ⊂ B is unital and satisfies gen(C) ≤ 3. Consider the
C∗-algebra B ⊗Z2,3. By Lemma 3.3, the sub-C∗-algebra C ⊗Z2,3 is generated by
two self-adjoint elements, say b, c.

One readily checks that B ⊗ Z2,3 is generated by the k self-adjoint elements
a1 ⊗ 1, . . . , ak−2 ⊗ 1, b, c. Since B = A ⊗ Z2∞,3∞ is isomorphic to a quotient of
B ⊗Z2,3 = A⊗Z2∞,3∞ ⊗Z2,3, we obtain gen(B) ≤ gen(B ⊗Z2,3) ≤ k.

Step 2. By Lemma 3.1, we have gen(B) ≤ 5. Applying Step 1 several times, we
obtain gen(B) ≤ 3.

It follows from Lemma 3.3 that there exists a positive element x̃ ∈ B⊗Z2,3 and
two positive, full elements ỹ′, z̃′ ∈ Z2,3 such that B ⊗ Z2,3 is generated by x̃ and
1⊗ ỹ′, and further ỹ′ and z̃′ are orthogonal.

Consider the surjective morphism id⊗π : A ⊗ Z2∞,3∞ ⊗ Z2,3 → A ⊗ Z2∞,3∞ .
One checks that the elements x := (id⊗π)(x̃) ∈ A⊗ Z2∞,3∞ and y′ := π(ỹ′), z′ :=
π(z̃′) ∈ Z2∞,3∞ have the desired properties. �
Theorem 3.5. Let A,B be two separable, unital C∗-algebras. Assume the follow-
ing:

(1) A contains a sequence a1, a2, . . . of full, positive elements that are pairwise
orthogonal,

(2) B admits a unital embedding of the Jiang-Su algebra Z.



2338 HANNES THIEL AND WILHELM WINTER

Then A⊗maxB is singly generated. Every other tensor product A⊗λB is a quotient
of A⊗max B, and therefore is also singly generated.

Proof. There exists a unital embedding of Z2∞,3∞ in Z, so we may assume that
there is a unital embedding of Z2∞,3∞ in B. We may assume that the elements
a1, a2, . . . ∈ A are contractive.

Choose a sequence b1, b2, . . . ∈ B of contractive, positive elements that is dense
in the set of all contractive, positive elements of B.

Consider the sub-C∗-algebra A⊗Z2∞,3∞ ⊂ A⊗maxB. By Lemma 3.4, there exist
a positive element x ∈ A⊗ Z2∞,3∞ and two full, positive elements y′, z′ ∈ Z2∞,3∞

such that A⊗Z2∞,3∞ is generated by x and y := 1⊗ y′, and further y′ and z′ are
orthogonal.

Define the following two elements of A⊗max B:

v := x, w := 1⊗ y′ −
∑
k≥1

1/2k · ak ⊗ (z′bkz
′).

Let D := C∗(v, w) be the sub-C∗-algebra of A ⊗max B generated by v and w.
We claim that D = A⊗B.

Step 1. We show A⊗Z2∞,3∞ ⊂ D. Note that the two elements 1⊗y′ and
∑

k≥1 1/2
k·

ak ⊗ (z′bkz
′) are positive and orthogonal. It follows that 1⊗ y′ is the positive part

of w, and therefore 1⊗ y′ ∈ D. Therefore, C∗(v, 1⊗ y′) = A⊗ Z2∞,3∞ ⊂ D.

Step 2. We show 1⊗ B ⊂ D. We have

g :=
∑
k≥1

1/2k · ak ⊗ (z′bkz
′) ∈ D.

It follows from Step 1 that ak ⊗ 1 ∈ D, and so

a2k ⊗ (z′bkz
′) = 2k · (ak ⊗ 1)g ∈ D.

Since a2k is full, there exist finitely many elements ci, di ∈ A such that 1A =∑
i cia

2
kdi. By Step 1, we have ci ⊗ 1, di ⊗ 1 ∈ D. Then

1⊗ (z′bkz
′) =

∑
i

(ci ⊗ 1)(a2k ⊗ (z′bkz
′))(di ⊗ 1) ∈ D,

for each k.
Let b ∈ B be a contractive, positive element. Then b = limj bk(j) for certain

indices k(j). Then 1 ⊗ (z′bz′) = limj 1 ⊗ (z′bk(j)z
′) ∈ D. It follows that the

hereditary sub-C∗-algebra 1 ⊗ z′Bz′ is contained in D. Since z′ is full in Z2∞,3∞ ,
there exist finitely many elements ci, di ∈ Z2∞,3∞ such that 1B =

∑
i ciz

′di. We
have seen that 1⊗ z′bz′ ∈ D for any b ∈ B. Then

1⊗ bz′ =
∑
i

(1⊗ ci)(1⊗ z′dibz
′) ∈ D,

for any b ∈ B. Similarly

1⊗ b =
∑
i

(1⊗ bciz
′)(1⊗ di) ∈ D,

for any b ∈ B, as desired.
It follows from Steps 1 and 2 that for each a ∈ A and b ∈ B the simple tensor

a⊗ b is contained in D. The conclusion follows since A⊗maxB is the closure of the
linear span of simple tensors. �
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Corollary 3.6. Let A,B be two separable, unital C∗-algebras that both admit a
unital embedding of the Jiang-Su algebra Z. Then A⊗max B is singly generated.

Proof. It is easy to verify that condition (1) of Theorem 3.5 is fulfilled if A admits
a unital embedding of Z. �
Example 3.7. Consider two unital, separable C∗-algebras A and B that have
real rank zero and no (non-zero) finite-dimensional representations. As shown by
Elliott and Rørdam, [ER06], the Jiang-Su algebra embeds unitally into A and B.
Therefore, A⊗max B is singly generated by the above Corollary 3.6.

Theorem 3.8. Let A be a unital, separable C∗-algebra. Then A ⊗ Z is singly
generated.

Proof. Note that A⊗Z ∼= (A⊗Z)⊗ Z. It is clear that both A⊗ Z and Z admit
unital embeddings of Z. Then apply the above Corollary 3.6. �
Corollary 3.9. Let A be a separable C∗-algebra. Then gen(A⊗Z) ≤ 3.

Proof. Let Ã be the minimal unitization of A. It follows from Theorem 3.8 that

gen(Ã ⊗ Z) ≤ 2. Since A ⊗ Z is an ideal in Ã ⊗ Z, we get gen(A ⊗ Z) ≤
gen(Ã⊗Z) + 1 ≤ 3 from Proposition 2.2, as desired. �

Our results allow us to give new proofs for results about the single generation of
certain von Neumann algebras.

Proposition 3.10. Assume M,N are separably-acting von Neumann algebras that
both admit a unital embedding of the hyperfinite II1-factor. Then M⊗̄N is singly
generated.

Proof. Consider the GNS-representation π : Z → B(H) of the Jiang-Su algebra
with respect to its tracial state. The weak closure, π(Z)′′, is isomorphic to the
hyperfinite II1-factor R. Thus, there exists a weakly dense, unital copy of Z inside
R.

Choose weakly dense, separable, unital C∗-algebras A0 ⊂ M , and similarly B0 ⊂
N . Consider Z ⊂ R ⊂ M and set A := C∗(A0,Z) ⊂ M . Similarly set B :=
C∗(B0,Z) ⊂ N .

Then A and B are separable, unital C∗-algebras that both contain unital copies
of the Jiang-Su algebra. By Corollary 3.6, A⊗max B is singly generated.

Consider the sub-C∗-algebra C := C∗(A⊗̄1, 1⊗̄B) ⊂ M⊗̄N . Then C is a quo-
tient of A⊗maxB, and therefore singly generated. Since C is weakly dense in M⊗̄N ,
we obtain that M⊗̄N is singly generated, as desired. �
Remark 3.11. We note that a von Neumann algebra M admits a unital embedding
of R if and only if M has no (non-zero) finite-dimensional representations.

The analogous statement for C∗-algebras would be that a C∗-algebra A admits
a unital embedding of Z if and only if A has no (non-zero) finite-dimensional
representations. It was shown by Elliott and Rørdam, [ER06], that this is true for
C∗-algebras of real rank zero. However, in [DHTW09] a simple, separable, unital,
non-elementary AH-algebra is constructed into which Z does not embed.

As a particular case of Proposition 3.10 we obtain the following result of Ge and
Popa.

Corollary 3.12 (Ge, Popa, [GP98, Theorem 6.2]). Assume M,N are separably-
acting II1-factors. Then M⊗̄N is singly generated.
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4. Applications

In this section we show that the Jiang-Su algebra Z embeds unitally into the
reduced group C∗-algebras, C∗

r (Γ), of groups Γ that contain a non-cyclic free sub-
group; see Proposition 4.2. We only consider discrete groups, and we let Fk denote
the free group with k generators (k ∈ {2, 3 . . . ,∞}).

We can apply Theorem 3.5 to show that certain tensor products of the form
A ⊗max C∗

r (Γ) are singly generated; see Corollary 4.4. In particular, C∗
r (F∞) ⊗

C∗
r (F∞) is singly generated, although it is not Z-stable; see Example 4.5.

4.1. It was shown by Robert, [Rob12], that the Jiang-Su algebra Z embeds unitally
into C∗

r (F∞). A key observation is that C∗
r (F∞) has strict comparison of positive

elements. This follows from the work of Dykema and Rørdam on reduced free
product C∗-algebras; see [DR98] and [DR00].

Dykema and Rørdam study the comparison of projections, but this can be gen-
eralized to obtain results about the comparison of positive elements, as noted by
Robert, [Rob12]. In particular, [DR98, Lemma 5.3] and [DR00, Theorem 2.1] can be
generalized, and it follows that C∗

r (F∞) has strict comparison of positive elements.

Proposition 4.2. If Γ is a discrete group that contains F∞ as a subgroup, then Z
embeds unitally into C∗

r (Γ).

Proof. In general, for any subgroup Γ1 of a discrete group Γ, we have a unital
embedding C∗

r (Γ1) ⊂ C∗
r (Γ). Hence, if F∞ is a subgroup of Γ, then C∗

r (Γ) contains
a unital copy of C∗

r (F∞), which in turn contains a unital copy of Z. �
Remark 4.3. Every non-cyclic free group Fk (k ≥ 2) contains F∞ as a subgroup.
In general, by the Nielsen-Schreier theorem, every subgroup of a free group is again
free. Thus, if a, b are free elements, then the the elements akbk generate a subgroup
Γ = 〈akbk, k ≥ 1〉 that is free, and since none of the elements akbk is contained in
the subgroup generated by the other elements, we have Γ ∼= F∞.

Thus, when we ask which discrete groups contain F∞ as a subgroup, we are
equivalently asking which groups Γ contain a non-cyclic free subgroup. It is a
necessary condition that Γ is non-amenable. The converse implication is known as
the von Neumann conjecture, but this was disproved in 1980 by Ol’shanskij.

A counterexample is the so-called Tarski monster groups, in which every non-
trivial proper subgroup is cyclic of some fixed prime order. Clearly, such a group
cannot contain F∞ as a subgroup, and it is Ol’shanskij’s contribution that shows
Tarski monster groups exist and are non-amenable.

On the other hand, every group with the weak Powers property, as defined in
[BN88], has a non-cyclic free subgroup. A proof can be found in [dlH07], which
also lists classes of groups that have the (weak) Powers property. We just mention
that all free products Γ1 ∗Γ2 with |Γ1| ≥ 2, |Γ2| ≥ 3 have the Powers property, and
therefore Proposition 4.2 applies.

We may derive the following from Theorem 3.5 and Proposition 4.2:

Corollary 4.4. Let A be a separable, unital C∗-algebra that contains a countable se-
quence of pairwise orthogonal, full elements (e.g., A is simple and non-elementary),
and let Γ be a group that contains a non-cyclic free subgroup. Then A⊗max C

∗
r (Γ)

is singly generated.

Example 4.5. Let Γ1,Γ2 be two groups that contain non-cyclic free subgroups.
Then C∗

r (Γ1 × Γ2) ∼= C∗
r (Γ1) ⊗max C∗

r (Γ2) is singly generated. For example, for
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any k, l ∈ {2, 3, . . . ,∞}, the C∗-algebra C∗
r (Fk)⊗maxC

∗
r (Fl) is singly generated. In

particular, C∗
r (F∞)⊗max C

∗
r (F∞) is singly generated.

It was pointed out to the authors by S. Wassermann that C∗
r (Fk)⊗C∗

r (Fl) is not
Z-stable, for any k, l ∈ {2, 3, . . . ,∞}. In fact, if C∗

r (Fk)⊗C∗
r (Fl) ∼= A⊗B⊗C, then

one of the three algebras A,B or C is isomorphic to C. This is a generalization of
the fact that C∗

r (Fk) is tensorially prime, and it can be proved similarly.
We note that it is a difficult open problem whether C∗

r (Fk) itself is singly gen-
erated.

Question 4.6. Given a non-amenable (discrete) group Γ, does C∗
r (Γ) admit a

unital embedding of Z?

For each group Γ, the trivial group-morphism Γ → {1} induces a surjective
morphism C∗(Γ) → C. Thus, the Jiang-Su algebra can never unitally embed into
a full group C∗-algebra. If Γ is amenable, then C∗

r (Γ)
∼= C∗(Γ), and consequently

there is no unital embedding of Z into the reduced group C∗-algebra of an amenable
group.

On the other hand, if Γ contains a non-cyclic free subgroup, then Proposition 4.2
gives a positive answer to Question 4.6. As noted in Remark 4.3, not every non-
amenable group contains a non-cyclic free subgroup. However, it is known that
the reduced group C∗-algebra of a non-amenable group has no finite-dimensional
representations, which is a necessary condition for the Jiang-Su algebra to embed.
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