## Adinkras for mathematicians

HTML articles powered by AMS MathViewer

- by Yan X. Zhang PDF
- Trans. Amer. Math. Soc.
**366**(2014), 3325-3355 Request permission

## Abstract:

*Adinkras*are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown non-trivial connections with coding theory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. We survey these topics for a mathematical audience, make new connections to other areas (homological algebra and poset theory), and solve some of these said problems, including the enumeration of all hypercube adinkras up through dimension $5$ and the enumeration of odd dashings of adinkras for any dimension.

## References

- M. F. Atiyah, R. Bott, and A. Shapiro,
*Clifford modules*, Topology**3**(1964), no. suppl, suppl. 1, 3–38. MR**167985**, DOI 10.1016/0040-9383(64)90003-5 - I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand,
*Differential operators on the base affine space and a study of ${\mathfrak {g}}$-modules*, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 21–64. MR**0578996** - Raoul Bott and Loring W. Tu,
*Differential forms in algebraic topology*, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR**658304**, DOI 10.1007/978-1-4757-3951-0 - Pierre Deligne,
*Notes on spinors*, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 99–135. MR**1701598** - C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, An application of cubical cohomology to adinkras and supersymmetry representations. In preparation.
- C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hubsch, K. M. Iga, and G. D. Landweber, Off-shell supersymmetry and filtered Clifford supermodules, March 2006. arXiv:math-ph/0603012.
- C. F. Doran, M. G. Faux, S. J. Gates Jr., T. Hübsch, K. M. Iga, and G. D. Landweber,
*On graph-theoretic identifications of Adinkras, supersymmetry representations and superfields*, Internat. J. Modern Phys. A**22**(2007), no. 5, 869–930. MR**2311874**, DOI 10.1142/S0217751X07035112 - C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga, G. D. Landweber, and R. L. Miller, Adinkras for Clifford Algebras, and Worldline Supermultiplets, November 2008. arXiv:hep-th/0811.3410.
- C.F. Doran, M.G. Faux, Jr. Gates, S.J., T. Hübsch, K.M. Iga, et al., Codes and Supersymmetry in One Dimension, 2011. arXiv:hep-th/1108.4124.
- B. L. Douglas, S. J. Gates, Jr., and J. B. Wang, Automorphism Properties of Adinkras, September 2010. arXiv:hep-th/1009.1449.
- M. G. Faux and S. J. Gates, Jr., Adinkras: A graphical technology for supersymmetric representation theory.
*PHYS.REV.D*, 71:065002, 2005. arXiv:hep-th/0408004. - M. G. Faux, K. M. Iga, and G. D. Landweber, Dimensional Enhancement via Supersymmetry, July 2009.
- M. G. Faux and G. D. Landweber, Spin holography via dimensional enhancement.
*Physics Letters B*, 681:161–165, October 2009. - Daniel S. Freed,
*Five lectures on supersymmetry*, American Mathematical Society, Providence, RI, 1999. MR**1707282** - S. J. Gates, Jr., J. Gonzales, B. Mac Gregor, J. Parker, R. Polo-Sherk, V. G. J. Rodgers, and L. Wassink. 4D, $\mathcal {N} = 1$ supersymmetry genomics (I).
*Journal of High Energy Physics*, 12, December 2009. - S. J. Gates, Jr. and T. Hubsch, On Dimensional Extension of Supersymmetry: From Worldlines to Worldsheets, April 2011.
- Allen Hatcher,
*Algebraic topology*, Cambridge University Press, Cambridge, 2002. MR**1867354** - T. Hubsch, Weaving Worldsheet Supermultiplets from the Worldlines Within, April 2011. arXiv:hep-th/1104.3135.
- W. Cary Huffman and Vera Pless,
*Fundamentals of error-correcting codes*, Cambridge University Press, Cambridge, 2003. MR**1996953**, DOI 10.1017/CBO9780511807077 - A. Klein and Y. X. Zhang, Enumerating graded poset structures on graphs. In preparation.
- H. Blaine Lawson Jr. and Marie-Louise Michelsohn,
*Spin geometry*, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989. MR**1031992** - R. Miller. Doubly-even codes. http://www.rlmiller.org/de_codes/.
- Abdus Salam and J. Strathdee,
*Super-gauge transformations*, Nuclear Phys.**B76**(1974), 477–482. MR**0356737**, DOI 10.1016/0550-3213(74)90537-9 - J. J. Seidel,
*A survey of two-graphs*, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973) Atti dei Convegni Lincei, No. 17, Accad. Naz. Lincei, Rome, 1976, pp. 481–511 (English, with Italian summary). MR**0550136** - Richard P. Stanley,
*Enumerative combinatorics. Vol. 1*, Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original. MR**1442260**, DOI 10.1017/CBO9780511805967 - Robin Thomas,
*A survey of Pfaffian orientations of graphs*, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 963–984. MR**2275714** - V. S. Varadarajan,
*Supersymmetry for mathematicians: an introduction*, Courant Lecture Notes in Mathematics, vol. 11, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2004. MR**2069561**, DOI 10.1090/cln/011 - Doug Wiedemann,
*A computation of the eighth Dedekind number*, Order**8**(1991), no. 1, 5–6. MR**1129608**, DOI 10.1007/BF00385808

## Additional Information

**Yan X. Zhang**- Affiliation: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Address at time of publication: Department of Mathematics, University of California, Berkeley, Berkeley, California 94720
- Received by editor(s): May 11, 2012
- Received by editor(s) in revised form: November 22, 2012
- Published electronically: February 6, 2014
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**366**(2014), 3325-3355 - MSC (2010): Primary 05A99
- DOI: https://doi.org/10.1090/S0002-9947-2014-06031-5
- MathSciNet review: 3180749