Collapsing of products along the Kähler-Ricci flow
HTML articles powered by AMS MathViewer
- by Matthew Gill PDF
- Trans. Amer. Math. Soc. 366 (2014), 3907-3924 Request permission
Abstract:
Let $X = M \times E$, where $M$ is an $m$-dimensional Kähler manifold with negative first Chern class and $E$ is an $n$-dimensional complex torus. We obtain $C^\infty$ convergence of the normalized Kähler-Ricci flow on $X$ to a Kähler-Einstein metric on $M$. This strengthens a convergence result of Song-Weinkove and confirms their conjecture.References
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
- Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359–372. MR 799272, DOI 10.1007/BF01389058
- Albert Chau, Convergence of the Kähler-Ricci flow on noncompact Kähler manifolds, J. Differential Geom. 66 (2004), no. 2, 211–232. MR 2106124
- Ph. Delanoë and A. Hirschowitz, About the proofs of Calabi’s conjectures on compact Kähler manifolds, Enseign. Math. (2) 34 (1988), no. 1-2, 107–122. MR 960195
- Lawrence C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 35 (1982), no. 3, 333–363. MR 649348, DOI 10.1002/cpa.3160350303
- F. Fong, Kähler-Ricci flow on projective bundles over Kähler-Einstein manifolds, to appear in Trans. Amer. Math. Soc., arXiv: 1104.3924.
- F. Fong, On the collapsing rate of Kähler-Ricci flow with finite-time singularity, preprint, arXiv: 1112.5987.
- F. Fong, Z. Zhang, The collapsing rate of the Kähler-Ricci flow with regular infinite time singularity, preprint, arXiv: 1202.3199.
- M. Gross, V. Tosatti, Y. Zhang, Collapsing of abelian fibred Calabi-Yau manifolds, preprint, arXiv: 1108.0967.
- N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 487–523, 670 (Russian). MR 661144
- Kefeng Liu, Xiaofeng Sun, and Shing-Tung Yau, Canonical metrics on the moduli space of Riemann surfaces. II, J. Differential Geom. 69 (2005), no. 1, 163–216. MR 2169586
- D. H. Phong, Natasa Sesum, and Jacob Sturm, Multiplier ideal sheaves and the Kähler-Ricci flow, Comm. Anal. Geom. 15 (2007), no. 3, 613–632. MR 2379807
- Wan-Xiong Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), no. 1, 223–301. MR 1001277
- J. Song, G. Székelyhidi, B. Weinkove, The Kähler-Ricci flow on projective bundles, preprint, arXiv: 1107:2144.
- Jian Song and Gang Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), no. 3, 609–653. MR 2357504, DOI 10.1007/s00222-007-0076-8
- Jian Song and Gang Tian, Canonical measures and Kähler-Ricci flow, J. Amer. Math. Soc. 25 (2012), no. 2, 303–353. MR 2869020, DOI 10.1090/S0894-0347-2011-00717-0
- J. Song, G. Tian, The Kähler-Ricci flow through singularities, preprint, arXiv: 0803.1613.
- Jian Song and Ben Weinkove, The Kähler-Ricci flow on Hirzebruch surfaces, J. Reine Angew. Math. 659 (2011), 141–168. MR 2837013, DOI 10.1515/CRELLE.2011.071
- J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler-Ricci flow, preprint, arXiv: 1003.0718.
- J. Song, B. Weinkove, Contracting exceptional divisors by the Kähler-Ricci flow II, preprint, arXiv: 1102.1759.
- J. Song, B. Weinkove, Lecture notes on the Kähler-Ricci flow.
- Morgan Sherman and Ben Weinkove, Interior derivative estimates for the Kähler-Ricci flow, Pacific J. Math. 257 (2012), no. 2, 491–501. MR 2972475, DOI 10.2140/pjm.2012.257.491
- J. Song, Y. Yuan Metric flips with Calabi ansatz, preprint, arXiv: 1011.1608.
- Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), no. 1, 99–130. MR 1064867
- Gang Tian and Zhou Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179–192. MR 2243679, DOI 10.1007/s11401-005-0533-x
- Valentino Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Differential Geom. 84 (2010), no. 2, 427–453. MR 2652468
- Hajime Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), no. 1, 123–133. MR 944606, DOI 10.1007/BF01449219
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Additional Information
- Matthew Gill
- Affiliation: Department of Mathematics, University of California, San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093
- Address at time of publication: Department of Mathematics, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, California 94720-3840
- MR Author ID: 951451
- Received by editor(s): June 14, 2012
- Received by editor(s) in revised form: December 17, 2012
- Published electronically: November 14, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 3907-3924
- MSC (2010): Primary 53C44; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-2013-06073-4
- MathSciNet review: 3192623