Dilation of the Weyl symbol and Balian-Low theorem
HTML articles powered by AMS MathViewer
- by Gerard Ascensi, Hans G. Feichtinger and Norbert Kaiblinger PDF
- Trans. Amer. Math. Soc. 366 (2014), 3865-3880 Request permission
Abstract:
The key result of this paper describes the fact that for an important class of pseudodifferential operators the property of invertibility is preserved under minor dilations of their Weyl symbols. This observation has two implications in time-frequency analysis. First, it implies the stability of general Gabor frames under small dilations of the time-frequency set, previously known only for the case where the time-frequency set is a lattice. Secondly, it allows us to derive a new Balian-Low theorem (BLT) for Gabor systems with window in the standard window class and with general time-frequency families. In contrast to the classical versions of BLT the new BLT does not only exclude orthonormal bases and Riesz bases at critical density, but indeed it even excludes irregular Gabor frames at critical density.References
- Radu Balan, Peter G. Casazza, Christopher Heil, and Zeph Landau, Density, overcompleteness, and localization of frames. II. Gabor systems, J. Fourier Anal. Appl. 12 (2006), no. 3, 309–344. MR 2235170, DOI 10.1007/s00041-005-5035-4
- Radu Balan, Pete Casazza, and Zeph Landau, Redundancy for localized frames, Israel J. Math. 185 (2011), 445–476. MR 2837145, DOI 10.1007/s11856-011-0118-1
- John J. Benedetto, Wojciech Czaja, Przemysław Gadziński, and Alexander M. Powell, The Balian-Low theorem and regularity of Gabor systems, J. Geom. Anal. 13 (2003), no. 2, 239–254. MR 1967026, DOI 10.1007/BF02930696
- John J. Benedetto, Wojciech Czaja, and Andrei Ya. Maltsev, The Balian-Low theorem for the symplectic form on $\Bbb R^{2d}$, J. Math. Phys. 44 (2003), no. 4, 1735–1750. MR 1963822, DOI 10.1063/1.1559415
- John J. Benedetto, Wojciech Czaja, and Alexander M. Powell, An optimal example for the Balian-low uncertainty principle, SIAM J. Math. Anal. 38 (2006), no. 1, 333–345. MR 2217320, DOI 10.1137/050634104
- John J. Benedetto, Christopher Heil, and David F. Walnut, Differentiation and the Balian-Low theorem, J. Fourier Anal. Appl. 1 (1995), no. 4, 355–402. MR 1350699, DOI 10.1007/s00041-001-4016-5
- Bo Berndtsson and Joaquim Ortega Cerdà, On interpolation and sampling in Hilbert spaces of analytic functions, J. Reine Angew. Math. 464 (1995), 109–128. MR 1340337
- Ole Christensen, Baiqiao Deng, and Christopher Heil, Density of Gabor frames, Appl. Comput. Harmon. Anal. 7 (1999), no. 3, 292–304. MR 1721808, DOI 10.1006/acha.1999.0271
- Elena Cordero and Karlheinz Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), no. 1, 107–131. MR 2020210, DOI 10.1016/S0022-1236(03)00166-6
- Elena Cordero and Fabio Nicola, Metaplectic representation on Wiener amalgam spaces and applications to the Schrödinger equation, J. Funct. Anal. 254 (2008), no. 2, 506–534. MR 2376580, DOI 10.1016/j.jfa.2007.09.015
- Wojciech Czaja and Alexander M. Powell, Recent developments in the Balian-Low theorem, Harmonic analysis and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2006, pp. 79–100. MR 2249306, DOI 10.1007/0-8176-4504-7_{5}
- Hans G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), no. 4, 269–289. MR 643206, DOI 10.1007/BF01320058
- Hans G. Feichtinger, Banach spaces of distributions of Wiener’s type and interpolation, Functional analysis and approximation (Oberwolfach, 1980) Internat. Ser. Numer. Math., vol. 60, Birkhäuser, Basel-Boston, Mass., 1981, pp. 153–165. MR 650272
- H. G. Feichtinger, Modulation spaces on locally compact abelian groups, Wavelets and Their Applications, Allied Publ. Private Limited, Chennai, 2003, 99–140.
- H. G. Feichtinger, Banach convolution algebras of Wiener type, Functions, series, operators, Vol. I, II (Budapest, 1980) Colloq. Math. Soc. János Bolyai, vol. 35, North-Holland, Amsterdam, 1983, pp. 509–524. MR 751019
- Hans G. Feichtinger and Peter Gröbner, Banach spaces of distributions defined by decomposition methods. I, Math. Nachr. 123 (1985), 97–120. MR 809337, DOI 10.1002/mana.19851230110
- Hans G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions, J. Funct. Anal. 146 (1997), no. 2, 464–495. MR 1452000, DOI 10.1006/jfan.1996.3078
- Hans G. Feichtinger and Norbert Kaiblinger, Varying the time-frequency lattice of Gabor frames, Trans. Amer. Math. Soc. 356 (2004), no. 5, 2001–2023. MR 2031050, DOI 10.1090/S0002-9947-03-03377-4
- H. G. Feichtinger and W. Sun, Stability of Gabor frames with arbitrary sampling points, Acta Math. Hungar. 113 (2006), no. 3, 187–212. MR 2269891, DOI 10.1007/s10474-006-0099-4
- Hans G. Feichtinger and Wenchang Sun, Sufficient conditions for irregular Gabor frames, Adv. Comput. Math. 26 (2007), no. 4, 403–430. MR 2291665, DOI 10.1007/s10444-004-7210-6
- Hans G. Feichtinger and Georg Zimmermann, A Banach space of test functions for Gabor analysis, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1998, pp. 123–170. MR 1601107
- Hans G. Feichtinger and Georg Zimmermann, An exotic minimal Banach space of functions, Math. Nachr. 239/240 (2002), 42–61. MR 1905663, DOI 10.1002/1522-2616(200206)239:1<42::AID-MANA42>3.0.CO;2-
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- Jean-Pierre Gabardo, Weighted irregular Gabor tight frames and dual systems using windows in the Schwartz class, J. Funct. Anal. 256 (2009), no. 3, 635–672. MR 2484931, DOI 10.1016/j.jfa.2008.10.025
- Jean-Pierre Gabardo and Deguang Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys. 45 (2004), no. 8, 3362–3378. MR 2077516, DOI 10.1063/1.1768621
- S. Zubin Gautam, A critical-exponent Balian-Low theorem, Math. Res. Lett. 15 (2008), no. 3, 471–483. MR 2407224, DOI 10.4310/MRL.2008.v15.n3.a7
- Karlheinz Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1843717, DOI 10.1007/978-1-4612-0003-1
- Karlheinz Gröchenig, Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math. 98 (2006), 65–82. MR 2254480, DOI 10.1007/BF02790270
- Karlheinz Gröchenig, Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam. 22 (2006), no. 2, 703–724. MR 2294795, DOI 10.4171/RMI/471
- Karlheinz Gröchenig, Multivariate Gabor frames and sampling of entire functions of several variables, Appl. Comput. Harmon. Anal. 31 (2011), no. 2, 218–227. MR 2806481, DOI 10.1016/j.acha.2010.11.006
- Karlheinz Gröchenig, Deguang Han, Christopher Heil, and Gitta Kutyniok, The Balian-Low theorem for symplectic lattices in higher dimensions, Appl. Comput. Harmon. Anal. 13 (2002), no. 2, 169–176. MR 1942751, DOI 10.1016/S1063-5203(02)00506-7
- Karlheinz Gröchenig and Eugenia Malinnikova, Phase space localization of Riesz bases for $L^2(\Bbb {R}^d)$, Rev. Mat. Iberoam. 29 (2013), no. 1, 115–134. MR 3010124, DOI 10.4171/RMI/715
- C. Heil, An introduction to weighted Wiener amalgams, Wavelets and Their Applications, Allied Publ. Private Limited, Chennai, 2003, 183–216.
- Christopher Heil, History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl. 13 (2007), no. 2, 113–166. MR 2313431, DOI 10.1007/s00041-006-6073-2
- Christopher Heil and Alexander M. Powell, Gabor Schauder bases and the Balian-Low theorem, J. Math. Phys. 47 (2006), no. 11, 113506, 21. MR 2278667, DOI 10.1063/1.2360041
- Joseph D. Lakey and Ying Wang, On perturbations of irregular Gabor frames, J. Comput. Appl. Math. 155 (2003), no. 1, 111–129. Approximation theory, wavelets and numerical analysis (Chattanooga, TN, 2001). MR 1992293, DOI 10.1016/S0377-0427(02)00895-6
- Franz Luef, Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces, J. Funct. Anal. 257 (2009), no. 6, 1921–1946. MR 2540994, DOI 10.1016/j.jfa.2009.06.001
- Franz Luef, Projections in noncommutative tori and Gabor frames, Proc. Amer. Math. Soc. 139 (2011), no. 2, 571–582. MR 2736339, DOI 10.1090/S0002-9939-2010-10489-6
- Franz Luef and Yuri I. Manin, Quantum theta functions and Gabor frames for modulation spaces, Lett. Math. Phys. 88 (2009), no. 1-3, 131–161. MR 2512143, DOI 10.1007/s11005-009-0306-7
- Niklas Lindholm, Sampling in weighted $L^p$ spaces of entire functions in ${\Bbb C}^n$ and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001), no. 2, 390–426. MR 1828799, DOI 10.1006/jfan.2000.3733
- Yu. I. Lyubarskiĭ, Frames in the Bargmann space of entire functions, Entire and subharmonic functions, Adv. Soviet Math., vol. 11, Amer. Math. Soc., Providence, RI, 1992, pp. 167–180. MR 1188007
- Joaquim Ortega-Cerdà and Kristian Seip, Beurling-type density theorems for weighted $L^p$ spaces of entire functions, J. Anal. Math. 75 (1998), 247–266. MR 1655834, DOI 10.1007/BF02788702
- Jayakumar Ramanathan and Tim Steger, Incompleteness of sparse coherent states, Appl. Comput. Harmon. Anal. 2 (1995), no. 2, 148–153. MR 1325536, DOI 10.1006/acha.1995.1010
- Kristian Seip, Reproducing formulas and double orthogonality in Bargmann and Bergman spaces, SIAM J. Math. Anal. 22 (1991), no. 3, 856–876. MR 1091688, DOI 10.1137/0522054
- Kristian Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space. I, J. Reine Angew. Math. 429 (1992), 91–106. MR 1173117, DOI 10.1515/crll.1992.429.91
- Kristian Seip and Robert Wallstén, Density theorems for sampling and interpolation in the Bargmann-Fock space. II, J. Reine Angew. Math. 429 (1992), 107–113. MR 1173118
- Johannes Sjöstrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1 (1994), no. 2, 185–192. MR 1266757, DOI 10.4310/MRL.1994.v1.n2.a6
- J. Sjöstrand, Wiener type algebras of pseudodifferential operators, Séminaire sur les Équations aux Dérivées Partielles, 1994–1995, École Polytech., Palaiseau, 1995, pp. Exp. No. IV, 21. MR 1362552
- Mitsuru Sugimoto and Naohito Tomita, The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal. 248 (2007), no. 1, 79–106. MR 2329683, DOI 10.1016/j.jfa.2007.03.015
- Joachim Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I, J. Funct. Anal. 207 (2004), no. 2, 399–429. MR 2032995, DOI 10.1016/j.jfa.2003.10.003
Additional Information
- Gerard Ascensi
- Affiliation: Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain
- Email: gerard.ascensi@ub.edu
- Hans G. Feichtinger
- Affiliation: Faculty of Mathematics, University of Vienna, Nordbergstraße 15, 1090 Vienna, Austria
- MR Author ID: 65680
- ORCID: 0000-0002-9927-0742
- Email: hans.feichtinger@univie.ac.at
- Norbert Kaiblinger
- Affiliation: Institute of Mathematics, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel-Strasse 33, 1180 Vienna, Austria
- Email: norbert.kaiblinger@boku.ac.at
- Received by editor(s): May 3, 2011
- Received by editor(s) in revised form: November 30, 2012
- Published electronically: December 6, 2013
- Additional Notes:
The authors were supported by the Austrian Science Fund FWF grants M1149
(first author), P20442
(second author), and P21339
, P24828
(third author).
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 3865-3880
- MSC (2010): Primary 47G30; Secondary 42C15, 81S30
- DOI: https://doi.org/10.1090/S0002-9947-2013-06074-6
- MathSciNet review: 3192621