$\Gamma$-extensions of the spectrum of an orbifold
HTML articles powered by AMS MathViewer
- by Carla Farsi, Emily Proctor and Christopher Seaton PDF
- Trans. Amer. Math. Soc. 366 (2014), 3881-3905 Request permission
Abstract:
We introduce the $\Gamma$-extension of the spectrum of the Laplacian of a Riemannian orbifold, where $\Gamma$ is a finitely generated discrete group. This extension, called the $\Gamma$-spectrum, is the union of the Laplace spectra of the $\Gamma$-sectors of the orbifold, and hence constitutes a Riemannian invariant that is directly related to the singular set of the orbifold. We compare the $\Gamma$-spectra of known examples of isospectral pairs and families of orbifolds and demonstrate that, in many cases, isospectral orbifolds need not be $\Gamma$-isospectral. We additionally prove a version of Sunada’s theorem that allows us to construct pairs of orbifolds that are $\Gamma$-isospectral for any choice of $\Gamma$.References
- Alejandro Adem, Johann Leida, and Yongbin Ruan, Orbifolds and stringy topology, Cambridge Tracts in Mathematics, vol. 171, Cambridge University Press, Cambridge, 2007. MR 2359514, DOI 10.1017/CBO9780511543081
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313
- Robert S. Cahn and Joseph A. Wolf, Zeta functions and their asymptotic expansions for compact symmetric spaces of rank one, Comment. Math. Helv. 51 (1976), no. 1, 1–21. MR 397801, DOI 10.1007/BF02568140
- Yuan-Jen Chiang, Spectral geometry of $V$-manifolds and its application to harmonic maps, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 93–99. MR 1216577, DOI 10.1090/pspum/054.1/1216577
- J. H. Conway and N. J. A. Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices 4 (1992), 93–96. MR 1159450, DOI 10.1155/S1073792892000102
- Dennis M. DeTurck and Carolyn S. Gordon, Isospectral deformations. II. Trace formulas, metrics, and potentials, Comm. Pure Appl. Math. 42 (1989), no. 8, 1067–1095. With an appendix by Kyung Bai Lee. MR 1029118, DOI 10.1002/cpa.3160420803
- Harold Donnelly, Spectrum and the fixed point sets of isometries. I, Math. Ann. 224 (1976), no. 2, 161–170. MR 420743, DOI 10.1007/BF01436198
- P. G. Doyle and J. P. Rossetti, Laplace-isospectral hyperbolic $2$-orbifolds are representation-equivalent, preprint, arXiv:1103.4372 [math.DG]
- Emily B. Dryden, Carolyn S. Gordon, Sarah J. Greenwald, and David L. Webb, Asymptotic expansion of the heat kernel for orbifolds, Michigan Math. J. 56 (2008), no. 1, 205–238. MR 2433665, DOI 10.1307/mmj/1213972406
- Emily B. Dryden and Alexander Strohmaier, Huber’s theorem for hyperbolic orbisurfaces, Canad. Math. Bull. 52 (2009), no. 1, 66–71. MR 2494312, DOI 10.4153/CMB-2009-008-0
- Whitney Duval, John Schulte, Christopher Seaton, and Bradford Taylor, Classifying closed 2-orbifolds with Euler characteristics, Glasg. Math. J. 52 (2010), no. 3, 555–574. MR 2679914, DOI 10.1017/S001708951000042X
- J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431, DOI 10.1007/978-3-642-56936-4
- Carla Farsi, Orbifold spectral theory, Rocky Mountain J. Math. 31 (2001), no. 1, 215–235. MR 1821378, DOI 10.1216/rmjm/1008959678
- Carla Farsi and Christopher Seaton, Generalized twisted sectors of orbifolds, Pacific J. Math. 246 (2010), no. 1, 49–74. MR 2645879, DOI 10.2140/pjm.2010.246.49
- Carla Farsi and Christopher Seaton, Nonvanishing vector fields on orbifolds, Trans. Amer. Math. Soc. 362 (2010), no. 1, 509–535. MR 2550162, DOI 10.1090/S0002-9947-09-04938-1
- Carla Farsi and Christopher Seaton, Generalized orbifold Euler characteristics for general orbifolds and wreath products, Algebr. Geom. Topol. 11 (2011), no. 1, 523–551. MR 2783237, DOI 10.2140/agt.2011.11.523
- Carolyn Gordon, Isospectral closed Riemannian manifolds which are not locally isometric, J. Differential Geom. 37 (1993), no. 3, 639–649. MR 1217163
- C. S. Gordon and J. P. Rossetti, Boundary volume and length spectra of Riemannian manifolds: what the middle degree Hodge spectrum doesn’t reveal, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 7, 2297–2314 (English, with English and French summaries). MR 2044174
- Akira Ikeda, On lens spaces which are isospectral but not isometric, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 3, 303–315. MR 597742
- Akira Ikeda, On space forms of real Grassmann manifolds which are isospectral but not isometric, Kodai Math. J. 20 (1997), no. 1, 1–7. MR 1443360, DOI 10.2996/kmj/1138043715
- R. J. Miatello and J. P. Rossetti, Flat manifolds isospectral on $p$-forms, J. Geom. Anal. 11 (2001), no. 4, 649–667. MR 1861302, DOI 10.1007/BF02930761
- R. J. Miatello and J. P. Rossetti, Comparison of twisted $p$-form spectra for flat manifolds with diagonal holonomy, Ann. Global Anal. Geom. 21 (2002), no. 4, 341–376. MR 1910457, DOI 10.1023/A:1015651821995
- J. Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 542. MR 162204, DOI 10.1073/pnas.51.4.542
- Iosif Polterovich, Combinatorics of the heat trace on spheres, Canad. J. Math. 54 (2002), no. 5, 1086–1099. MR 1924714, DOI 10.4153/CJM-2002-040-4
- Emily Proctor, Orbifold homeomorphism finiteness based on geometric constraints, Ann. Global Anal. Geom. 41 (2012), no. 1, 47–59. MR 2860396, DOI 10.1007/s10455-011-9270-4
- Emily Proctor and Elizabeth Stanhope, An isospectral deformation on an infranil-orbifold, Canad. Math. Bull. 53 (2010), no. 4, 684–689. MR 2761691, DOI 10.4153/CMB-2010-074-8
- Dorette Pronk and Laura Scull, Translation groupoids and orbifold cohomology, Canad. J. Math. 62 (2010), no. 3, 614–645. MR 2666392, DOI 10.4153/CJM-2010-024-1
- Juan Pablo Rossetti, Dorothee Schueth, and Martin Weilandt, Isospectral orbifolds with different maximal isotropy orders, Ann. Global Anal. Geom. 34 (2008), no. 4, 351–366. MR 2447904, DOI 10.1007/s10455-008-9110-3
- Dorothee Schueth, Continuous families of isospectral metrics on simply connected manifolds, Ann. of Math. (2) 149 (1999), no. 1, 287–308. MR 1680563, DOI 10.2307/121026
- Naveed Shams Ul Bari, Orbifold lens spaces that are isospectral but not isometric, Osaka J. Math. 48 (2011), no. 1, 1–40. MR 2802590
- Naveed Shams, Elizabeth Stanhope, and David L. Webb, One cannot hear orbifold isotropy type, Arch. Math. (Basel) 87 (2006), no. 4, 375–384. MR 2263484, DOI 10.1007/s00013-006-1748-0
- E. Stanhope and A. Uribe, The spectral function of a Riemannian orbifold, Ann. Global Anal. Geom. 40 (2011), no. 1, 47–65. MR 2795449, DOI 10.1007/s10455-010-9244-y
- Toshikazu Sunada, Riemannian coverings and isospectral manifolds, Ann. of Math. (2) 121 (1985), no. 1, 169–186. MR 782558, DOI 10.2307/1971195
- Craig J. Sutton, Equivariant isospectrality and Sunada’s method, Arch. Math. (Basel) 95 (2010), no. 1, 75–85. MR 2671240, DOI 10.1007/s00013-010-0139-8
- Hirotaka Tamanoi, Generalized orbifold Euler characteristic of symmetric products and equivariant Morava $K$-theory, Algebr. Geom. Topol. 1 (2001), 115–141. MR 1805937, DOI 10.2140/agt.2001.1.115
- Hirotaka Tamanoi, Generalized orbifold Euler characteristics of symmetric orbifolds and covering spaces, Algebr. Geom. Topol. 3 (2003), 791–856. MR 1997338, DOI 10.2140/agt.2003.3.791
- Marie-France Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), no. 1, 21–32 (French). MR 584073, DOI 10.2307/1971319
- M. Weilandt, Isospectral orbifolds with different maximal isotropy orders, Diplom. Thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik, 2007.
Additional Information
- Carla Farsi
- Affiliation: Department of Mathematics, University of Colorado at Boulder, Campus Box 395, Boulder, Colorado 80309-0395
- MR Author ID: 311031
- Email: farsi@euclid.colorado.edu
- Emily Proctor
- Affiliation: Department of Mathematics, Middlebury College, Middlebury, Vermont 05753
- Email: eproctor@middlebury.edu
- Christopher Seaton
- Affiliation: Department of Mathematics and Computer Science, Rhodes College, 2000 N. Parkway, Memphis, Tennessee 38112
- MR Author ID: 788748
- Email: seatonc@rhodes.edu
- Received by editor(s): August 20, 2012
- Received by editor(s) in revised form: December 12, 2012
- Published electronically: December 27, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 366 (2014), 3881-3905
- MSC (2010): Primary 58J53, 57R18; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9947-2013-06082-5
- MathSciNet review: 3192622