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CASTELNUOVO-MUMFORD REGULARITY AND THE

DISCRETENESS OF F -JUMPING COEFFICIENTS

IN GRADED RINGS

MORDECHAI KATZMAN AND WENLIANG ZHANG

Abstract. In this paper we show that the sets of F -jumping coefficients of
ideals form discrete sets in certain graded F -finite rings. We do so by giving a
criterion based on linear bounds for the growth of the Castelnuovo-Mumford
regularity of certain ideals. We further show that these linear bounds exist
for one-dimensional rings and for ideals of (most) two-dimensional domains.
We conclude by applying our technique to prove that all sets of F -jumping
coefficients of all ideals in the determinantal ring given as the quotient by
2× 2 minors in a 2× 3 matrix of indeterminates form discrete sets.

1. Introduction

The aim of this paper is to establish the discreteness of the set of F -jumping
coefficients of ideals in a certain class of graded F -finite rings which includes one-
dimensional rings and two-dimensional domains. The remainder of this introduc-
tory section will review the prerequisite notions necessary to understand the prob-
lem at hand and the methods used to solve them.

All rings in this paper are commutative and have prime characteristic p. If S is
such a ring and M is an S-module, for all e ≥ 0 we may define an S-bisubmodule
F e
∗M , which is identical to M as an Abelian group, and on which S acts on the

right with the given action while the left action is given by s · a = sp
e

a for all
s ∈ S and a ∈ M . We shall further assume in this paper that all rings S are
F -finite, i.e., that F e

∗S are finitely generated left S-modules for all e ≥ 0. Given
a reduced ring S as above we also define a (non-commutative) graded algebra
CS =

⊕
e≥0 HomS(F

e
∗S, S) where multiplication of φ ∈ HomS(F

α
∗ S, S) and ψ ∈

HomS(F
β
∗ S, S) is defined as φψ = φ◦Fα

∗ (ψ) ∈ HomS(F
α+β
∗ S, S) (cf. [S11a, §3] and

[Bli09, §2]). Note that CS is an S-bimodule, as S acts on each HomS(F
α
∗ S, S) on

the left via its left action on Fα
∗ S and on the right via its right action on Fα

∗ S.
When S is reduced we shall tacitly identify the inclusion S ↪→ F e

∗S given by
s �→ s · 1 = sp

e

with the inclusion of rings S ⊂ S1/pe

.

Definition 1.1. Given a ring S, an ideal a ⊆ S and a positive real number t, we
define the test ideal τ (at) to be the unique smallest non-zero ideal J ⊆ R such that
φ((a�t(p

e−1)�J)1/p
e

) ⊆ J for all e > 0 and all φ ∈ HomS(F
e
∗S, S).
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Our definition is inspired by the work of Karl Schwede (cf. [S11a]) and is equiv-
alent to the original definition in [HY]. It is not immediately clear why the unique
smallest non-zero ideal J ⊆ R in Definition 1.1 should exist; its existence is guar-
anteed by [S11a, Theorem 3.18].

These generalized test ideals and their characteristic-zero counterparts, multi-
plier ideals, have recently attracted the attention of many algebraic geometers and
algebraists. A specific direction of research aims to relate the F -jumping coeffi-
cients of ideals defined below to the geometrical properties of the varieties defined
by these ideals.

Generalized test ideals satisfy the following basic properties:

Theorem 1.2 (cf. Remark 2.12 in [MTW] and Lemma 3.23 in [BSTZ]). Let a be
any ideal.

(a) For all 0 < s < t, τ (as) ⊇ τ (at).
(b) For any t > 0 there exists an ε > 0 such that τ (ac) = τ (at) for all t ≤ c <

t+ ε.

These two properties above suggest the following:

Definition 1.3. A positive real number t is an F -jumping coefficient of the ideal
a if τ (at−ε) � τ (at) for all ε > 0.

The study of the nature of the set of F -jumping coefficients of a given ideal has
recently attracted intense attention. The question of the rationality and discrete-
ness of these sets has recently been studied in a number of papers, for example
[H], [BMS08], [BMS09], [KLZ], [S11b], [BSTZ], and [STZ]. In particular, the dis-
creteness of F -jumping coefficients of an ideal in a non-Q-Gorenstein ring remains
open.

This paper links the question of the discreteness of sets of F -jumping coeffi-
cients with the notion of Castelnuovo-Mumford regularity, a classical numerical
invariant. This notion has already played an important role in the study of rings
of characteristic p. For example, in [K] the connection between the linear growth
of Castelnuovo-Mumford regularity of Frobenius powers of ideals and tight closure
was explored. Specifically, the following question was raised there:

Question 1.4 (Question 2 in [K]). Let R = k[x1, . . . , xn] be a polynomial ring over
a field k of characteristic p > 0 and let I, J be two homogeneous ideals of R. Does
the Castelnuovo-Mumford regularity of I + J [pe] grow linearly with pe?

Surprisingly, even a positive answer to the above question in the case when I is
principal will imply the discreteness of F -jumping coefficients, and this is one of
our main results:

Theorem 3.3. Let R = K[x1, . . . , xn] be a polynomial ring over an F -finite field
K of prime characteristic p and I = (g1, . . . , gν) be a homogeneous ideal of R.
Assume that reg(R/(I [p

e] + giR)) ≤ Cpe for all e ≥ 1 and 1 ≤ i ≤ ν, where C is
a constant independent of e and i. Then the sets of F -jumping coefficients of all
ideals (homogeneous or not) in S = R/I are discrete.

This theorem is proved by showing that its hypothesis implies the gauge-bound-
edness of R/I– the discreteness of the sets of F -jumping coefficients is a corollary
of this. We do not know whether the hypothesis of the theorem is equivalent to the
gauge-boundedness of R/I.
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In general, Question 1.4 is rather difficult, and not much progress has been made
since it was first raised. In this paper, using a deep result of Eisenbud-Huneke-Ulrich
in [EHU], we give a positive answer to Question 1.4 in a special case as follows:

Corollary 3.6. Let R = K[x1, . . . , xn] be a polynomial ring over an F -finite field
K of prime characteristic p and I = (g1, . . . , gν) be a homogeneous ideal of R. If
dim(Sing(R/(gi)) ∩ V (I)) ≤ 1 for all 1 ≤ i ≤ ν, then reg(R/(I [p

e] + giR)) ≤ Cpe

for all e ≥ 1 and 1 ≤ i ≤ ν, where C is a constant independent of e and i.
Consequently, the sets of F -jumping coefficients of all ideals (homogeneous or not)
in S = R/I are discrete.

This corollary immediately implies the discreteness of the set of jumping coeffi-
cients in graded one-dimensional F -finite rings and (most) two-dimensional domains
(Remark 3.7).

The last section in this paper shows the usefulness of our approach by applying
Theorem 3.3 to a determinantal ring.

Corollary 4.6. Let R = K[xij ] with 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. Let I be the ideal
generated by the 2 × 2 minors of the matrix (xij). Then all sets of F -jumping
coefficients of all ideals (homogeneous or not) in R/I are discrete.

2. Gauge boundedness and Castelnuovo-Mumford regularities

In [Bli09], Manuel Blickle introduced a notion called gauge boundedness, which
has particular significance to the work presented here, and which we now describe.
Henceforth, let R denote the polynomial ring K[x1, . . . , xn] over an F -finite field K,
let m denote the ideal R generated by its variables, and for all d ≥ 0 let Rd be the K-
vector subspace of R spanned by all monomials xα1

1 . . . xαn
n with 0 ≤ α1, . . . , αn ≤ d.

Given an R-module M generated by a finite set of elements {m1, . . . ,mk}, we define
a filtration {Md}d≥0 of M by setting Md = Rdm1 + · · · + Rdmk for d ≥ 0 and
M−∞ = {0}. Having defined this we now obtain a gauge δM : M → N ∪ −∞
defined as

δM (m) =

{
−∞, if m = 0,
d, if m �= 0 and m ∈ Md \Md−1.

In particular any cyclic R-module has a natural gauge obtained by choosing as a
set of generators the singleton consisting of the image of 1.

In this paper we shall call a quotient S = R/I gauge bounded if there exists a
set of homogeneous generators {ψγ ∈ {CS}eγ}γ∈Γ of CS viewed as a right S-module
such that for some constant K and all r ∈ R, δS(ψγ(r + I)) ≤ δS(r + I)p−eγ +K
(cf. [Bli09, Definition 4.7]).

Theorem 2.1 (Corollary 4.16 in [Bli09]). If S = R/I is gauge bounded, the set
of F -jumping coefficients of any ideal in S is discrete.

Recall our assumption that R is F -finite; this amounts to the finiteness of the
field extension K ⊂ K1/pe

for all (equivalently, some) e ≥ 0. For e ≥ 0 fix a K-basis
Be of K1/pe

and assume further that 1 ∈ Be.

Recall (e.g., from section 1 of [F]) that F e
∗R

∼= K1/pe

[x
1/pe

1 , . . . , x
1/pe

n ], and our
assumption that R is F -finite implies that F e

∗R is a free (left) R-module with free

basis {bxα1/p
e

1 . . . x
αn/p

e

n | b ∈ Be, 0 ≤ α1, . . . , αn < pe}.
We introduce the following notation: for any α = (α1, . . . , αn) ∈ Nn let xα denote

the monomial xα1
1 . . . xαn

n in R and let xα/pe

denote the monomial x
α1/p

e

1 . . . x
αn/p

e

n
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in F e
∗R

∼= K1/pe

[x
1/pe

1 , . . . , x
1/pe

n ]. We shall also denote the condition a ≤ α1, . . . , αn

< b with a ≤ α < b and the equalities α1 = · · · = αn = a with α = a. For any
e ≥ 0 let Λe = {(α1, . . . , αn) | 0 ≤ α1, . . . , αn < pe}.

We define the trace map T : F e
∗R → R to be the projection onto the free

summand Rx
(pe−1)/pe

1 . . . x
(pe−1)/pe

n and recall that there is an isomorphism F e
∗R →

HomR(F
e
∗R,R) sending r to the composition T ◦μr1/pe , where μr1/pe : F e

∗R → F e
∗R

is given by multiplication by r1/p
e

on the right. For a quotient S = R/I we have
an explicit expression for CS : the results in [F, §1] imply that each HomS(F

e
∗S, S)

with its right S-module structure is isomorphic to
(I [p

e] : I)

I [pe]
T , where aT (r + I) =

T (ar) + I for all a ∈ (I [p
e] : I).

Lemma 2.2. The hypothesis of Theorem 2.1 will be satisfied if we can find a
constant K and, for all e ≥ 0, a set of generators g1, . . . , gνe

of (I [p
e] : I) such that

δR(gi) = δS(gi + I) ≤ Kpe for all 1 ≤ i ≤ gνe
.

Proof. Fix any e ≥ 0 and write q = pe. First note that for any r ∈ R, δR(r) =
δF e

∗R(r)/q.
Now pick g = gi for some 1 ≤ i ≤ νe and write

g1/q =
∑

α∈Λe,v∈Be

gα,vvx
α/q,

where each gα,v is in R. For any r1/q ∈ K1/pe

[x
1/pe

1 , . . . , x
1/pe

n ] write

r1/q =
∑

β∈Λe,w∈Be

rβ,wwx
β/q,

where each rβ,w is in R, and compute

δR
(
T ◦ μg1/q (r

1/q)
)
= δR

⎛
⎜⎝

∑
α,β∈Λe,v,w∈Be,
α+β=q−1,vw∈K

gα,vrβ,w

⎞
⎟⎠

≤ max{δR (gα,vrβ,w) |α, β ∈ Λe, v, w ∈ Be, α+ β = q − 1, vw ∈ K}.

Now each δR (gα,vrβ,w) above is at most δR (gα,v)+ δR (rβ,w) (cf. [Bli09, Lemma
4.1]). Then:

δR (gα,v) = δF e
∗R (gα,v) /q ≤ δF e

∗R

(
gα,vvx

α/q
)
/q ≤ δF e

∗R

(
g1/q

)
/q ≤ K

and

δR (rα,w) = δF e
∗R (rα,w) /q ≤ δF e

∗R

(
rα,wwx

β/q
)
/q ≤ δF e

∗R

(
r1/q

)
/q;

hence

δR

(
T ◦ μg1/q (r1/q)

)
≤ K + δF e

∗R

(
r1/q

)
/q.

�

Remark 2.3. It is clear that, as the gauge of any element in R is at most its degree,
the condition in Lemma 2.2 will be satisfied if there is a constant K such that
the maximal degree of all minimal generators of (I [p

e] : I) is bounded by Kpe. If
I ⊆ R is a homogeneous ideal, then the maximal degree of all minimal generators
of (I [p

e] : I) is bounded by the Castelnuovo-Mumford regularity of (I [p
e] : I).
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If I ⊆ R is not a homogeneous ideal, we may consider the homogenization h(I)
of I with respect to a new variable. If the maximal degree of all minimal generators
of ((h(I))[p

e] : h(I)) is bounded by Kpe, then by de-homogenizing one can see that
(I [p

e] : I) can be generated by polynomials whose degrees are bounded by Kpe.

We shall assume henceforth that I ⊆ R is a homogeneous ideal. Following
Remark 2.3, in order to find a uniform K (independent of e) such that the maximal
degree of a minimal generator of (I [p

e] : I) is bounded by Kpe, we shall attempt
a harder problem, namely, the bounding of the Castelnuovo-Mumford regularity of
these homogenous ideals. But first very briefly we review the notion of Castelnuovo-
Mumford regularity and some of its properties.

Recall that the Castelnuovo-Mumford regularity of a finitely generated graded R-
module M (which we shall denote reg(M)) is defined in terms of its minimal graded

resolutions F•. To wit, for all i ≥ 0 write Fi =
⊕rank(Fi)

j=1 R(−dij), where R(−d)

denotes the degree shift R(−d)j = Rd+j ; reg(M) is then defined as max{dij −
i | i ≥ 0, 1 ≤ j ≤ rank(Fi)}. Note that the shifts d0,j are the degrees of a set of
homogeneous minimal generators of M ; hence the maximal degree of a homogenous
minimal generator of M is bounded by reg(M).

Alternatively, one may define Castelnuovo-Mumford regularity in terms of local
cohomology. If M =

⊕
Md is a graded Artinian R-module, we have regM =

max{d |Md �= 0}, and for a general graded R-module we have

regM = max
i≥0

{reg Tori(M,R/m)− i} = max
j≥0

{regHj
m(M) + j}

(cf. [E05, Corollary 4.5]). Two immediate consequences of this characterization
of regularity are the fact that if M1 → M2 → M3 is a graded exact sequence
of Artinian R-modules, then regM2 ≤ max{regM1, regM3}, and if 0 → N1 →
N2 → N3 → 0 is a graded short exact sequence of R-modules, then regN2 ≤
max{regN1, regN3} (cf. [E95, Corollary 20.19]).

The rest of this paper will explore instances of graded ideals I ⊆ R for which
there exists a constant K such that reg(I [p

e] : I) ≤ Kpe for all e ≥ 0; these
ideals will satisfy the hypothesis of Lemma 2.2 and we will be able to deduce the
discreteness of the sets of F -jumping coefficients of all ideals in S = R/I. For
the sake of readability we shall abbreviate the expression of the condition above as
reg(I [p

e] : I) = O(pe). We can now claim the following.

Corollary 2.4. If reg(I [p
e] : I) = O(pe), then R = S/I is gauge-bounded. Hence

the sets of jumping coefficients of all ideals of R are discrete.

3. The main results

In this section we establish the conditions of Corollary 2.4 on the growth of
regularity in some interesting cases.

Throughout this section we fix a minimal set of homogeneous generators {g1, . . . ,
gν} for the homogenous ideal I ⊆ R. We denote di = deg gi for all 1 ≤ i ≤ ν and
we define the graded module

B =

⊕ν
i=1 R(di)

RΓ
,
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where

Γ =

⎛
⎜⎝

g1
...
gν

⎞
⎟⎠ ,

together with its graded free resolution F•,

0 → R
Γ−→

ν⊕
i=1

R(di) → 0.

For any e≥0 we may use this graded resolution to compute T e
j =TorRj (R/I [p

e], B),

and we obtain T e
1 = (I [p

e] : I)/I [p
e], T e

0 = B ⊗ R/I [p
e] and T e

j = 0 for all j > 1.
Since

R/I [p
e]

(I [pe] : I)/I [pe]
∼=

R

(I [pe] : I)

and

reg
R/I [p

e]

(I [pe] : I)/I [pe]
= reg(I [p

e] : I)/I [p
e] + 1,

we deduce that reg (I [p
e] : I) = reg R

(I[pe]:I)
−1 = O(pe) if and only if reg T e

1 = O(pe).

The one-dimensional case is straightforward.

Theorem 3.1. If dimR/I = 1, all sets of F -jumping coefficients of ideals in R/I
are discrete.

Proof. In view of Corollary 2.4 and the discussion above, we need to show that
regT e

1 = O(pe).
Consider the short exact sequences 0 → T e

1 → R/I [p
e] → C → 0, where C is

the cokernel of the first non-zero map and 0 → C →
⊕ν

i=1 R/I [p
e](di) → T e

0 → 0.
These induce long exact sequences

(1) 0 → H0
m(T

e
1 ) → H0

m(R/I [p
e]) → H0

m(C) → . . .

and

(2) 0 → H0
m(C) →

ν⊕
i=1

H0
m(R/I [p

e])(di) → H0
m(T

e
0 ) → . . . .

Note that since R is regular, one may obtain a minimal graded free resolution
of R/I [p

e] by applying the Frobenius functor to a minimal graded free resolution of
R/I, and hence regR/I [p

e] = O(pe). The inclusions H0
m(T

e
1 ) ↪→ H0

m(R/I [p
e]) and

H0
m(C) ↪→ H0

m(
⊕ν

i=1 R/I [p
e])(di) now imply regH0

m(T
e
1 ) = O(pe) and regH0

m(C) =

O(pe). The last equality in turn implies that regH1
m(T

e
1 ) = O(pe). If dimR/I = 1,

these calculations show that reg T e
1 = O(pe) and the result follows. �

We now tackle the general case. We fix homogeneous elements u1, . . . , uN ∈ R
of degrees d1, . . . , dN . For 1 ≤ k ≤ N let

Uk =

⎛
⎜⎝

u1

...
uk

⎞
⎟⎠ ∈ Rk.



CASTELNUOVO-MUMFORD REGULARITY & F -JUMPING COEFFICIENTS 3525

For all 1 ≤ k ≤ N we can define the graded module Bk =
⊕ν

i=1 R(di)

RUk
together with

its graded free resolution

0 → R
Uk−−→

k⊕
i=1

R(di) → 0.

For any e ≥ 0 we may use this graded resolution to compute T e
kj = TorRj (R/I [p

e],

Bk). Just as in the previous theorem we have two short exact sequences, 0 → T e
k1 →

R/I [p
e] → Ck → 0 and 0 → Ck →

⊕k
i=1 R/I [p

e](di) → T e
k0 → 0, which induce long

exact sequences

(3) · · · → Hj
m(T

e
k1) → Hj

m(R/I [p
e]) → Hj

m(Ck) → . . .

and

(4) · · · → Hj
m(Ck) →

k⊕
i=1

Hj
m(R/I [p

e])(di) → Hj
m(T

e
k0) → . . . .

These imply that regH0
m(Ck) = O(pe) and regH1

m(T
e
k1) = O(pe). Set Jk to be the

ideal in R generated by u1, . . . , uk for all 1 ≤ k ≤ N ; we have T e
k1 = (I [p

e] : Jk)/I
[pe].

Hence from the short exact sequence 0 → (I [p
e] : Jk)/I

[pe] → R/I [p
e] → R/(I [p

e] :
Jk) → 0 we can deduce that

(5) regH1
m

(
R/(I [p

e] : Jk)
)
= O(pe).

Lemma 3.2. Assume that reg(R/(I [p
e] + uiR)) = O(pe) for all 1 ≤ i ≤ N . Then

for all 1 ≤ k ≤ N and all j ≥ 0

regHj
m

(⊕k
i=1(R/I [p

e])(di)

R/I [pe]Uk

)
= O(pe).

Proof. We proceed by induction on j. First we prove the case when j = 0 which
we will do by induction on 1 ≤ k ≤ N , the case k = 1 being immediate from the
hypothesis. Assume that k > 1 and that the lemma holds for all smaller values of
k. Fix e ≥ 0 and abbreviate A = R/I [p

e]. We apply the induction hypothesis to
the graded short exact sequence

(6) 0 → AUk−1 ⊕Auk

AUk
−→

⊕k
i=1 A(di)

AUk
→

(⊕k−1
i=1 A(di)

AUk−1

)
⊕ A

Auk
(dk) → 0

and reduce the problem to the bounding of the regularity of

H0
m

(
AUk−1 ⊕Auk

AUk

)
.

For all 1 ≤ j ≤ k let Jj = u1R+ · · ·+ ujR. We have a graded map

φ : A → AUk−1 ⊕Auk

AUk
,

which sends a to the image of aUk−1 ⊕ 0 in AUk−1⊕Auk

AUk
. Note that in AUk−1⊕Auk

AUk

we always have

(u1, . . . , uk−1, 0) + (0, . . . , 0, uk) = 1 · (u1, . . . , uk) = 1 · Uk = 0.
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Hence, for any given element (au1, . . . , auk−1, a
′uk) ∈ AUk−1⊕Auk

AUk
, we have

(au1, . . . , auk−1, a
′uk) = a · (u1, . . . , uk−1, 0) + a′ · (0, . . . , 0, uk)

= a · (u1, . . . , uk−1, 0) + (−a′) · (u1, . . . , uk−1, 0)

= (a− a′) · (u1, . . . , uk−1, 0) = φ(a− a′),

and so φ is surjective. Also note that

kerφ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a |

⎛
⎜⎜⎜⎝

au1

...
auk−1

0

⎞
⎟⎟⎟⎠ = z

⎛
⎜⎜⎜⎝

u1

...
uk−1

uk

⎞
⎟⎟⎟⎠ for some z ∈ A

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
(
(I [p

e] : u1)A ∩ · · · ∩ (I [p
e] : uk−1)A

)
+ (I [p

e] : uk)A

=
(
I [p

e] : Jk−1)
)
A+ (I [p

e] : uk)A.

Using the graded isomorphism A/ kerφ ∼=
AUk−1 ⊕Auk

AUk
we reduce the problem to

the bounding of the regularity of

H0
m

(
A

(I [pe] : Jk−1R)A+ (I [pe] : ukR)A

)
.

Now the short exact sequence

0 → A

(I [pe] : Jk)A
→ A

(I [pe] : Jk−1)A
⊕ A

(I [pe] : ukR)A

→ A

(I [pe] : Jk−1)A+ (I [pe] : ukR)A
→ 0

yields the exact sequence

Hi
m

(
A

(I [pe] : Jk−1)A

)
⊕Hi

m

(
A

(I [pe] : ukR)A

)
(7)

→ Hi
m

(
A

(I [pe] : Jk−1R)A+ (I [pe] : ukR)A

)

→ Hi+1
m

(
A

(I [pe] : JkR)A

)
,

which (with i = 0) establishes regH0
m

(
A/

(
I [p

e] : Jk−1R
)
A+ (I [p

e] : ukR)A
)

=
O(pe) because of our induction hypothesis and (5). This concludes the proof of
the initial step of our induction, namely, that of j = 0.

Assume that we have proved that

regHl
m

(⊕k
i=1(R/I [p

e])(di)

R/I [pe]Uk

)
= O(pe)

for 0 ≤ l ≤ j − 1 and for all 1 ≤ k ≤ N . From the exact sequence (4), we can see
that

regHγ
m(Ck) = O(pe)
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for all 0 ≤ γ ≤ j and for all 1 ≤ k ≤ N . Then from the exact sequence (3), we can
see that

regHδ
m(T

e
k1) = O(pe)

for all 0 ≤ δ ≤ j + 1 and for all 1 ≤ k ≤ N , i.e.

regHδ
m(

R

(I [pe] : Jk)
) = O(pe)

for all 0 ≤ δ ≤ j + 1.

Now we will prove that Hj
m

(⊕k
i=1(R/I[pe])(di)

R/I[pe]Uk

)
= O(pe) by using induction on k.

When k = 1, this is precisely our assumption that reg
(
R/(I [p

e] + uiR)
)
= O(pe)

for all 1 ≤ i ≤ N . Now the induction hypothesis applied to the exact sequence (6)
reduces our proof to bounding the regularity of

Hi
m

(
AUk−1 ⊕Auk

AUk

)
,

for all 0 ≤ i ≤ j. The exact sequence (7) finishes the proof. �

Theorem 3.3. If reg
(
R/(I [p

e] + giR)
)
= O(pe) for all 1 ≤ i ≤ ν, then all sets of

F -jumping coefficients of all ideals in R/I are discrete.

Proof. Apply Lemma 3.2 with N = ν and uk = gk for all 1 ≤ k ≤ ν and deduce
that reg T e

1 = O(pe). �

Remark 3.4. The non-graded case may be obtained by combining Remark 2.3
and Theorem 3.3. For an arbitrary radical ideal J = (g1, . . . , gν) in R con-
sider the homogenizations h(I) and h(gi) with respect to a new variable Z. If
reg

(
R[Z]/(h(J)[p

e] + h(gi)R[Z])
)
= O(pe) for all 1 ≤ i ≤ ν, then R/J would be

gauge bounded and thus all sets of F -jumping coefficients of all ideals in R/J would
be discrete.

Lemma 3.5 (cf. section 6 in [K] and Theorem 4.2 in [C]). Let T be a standard
graded algebra of prime characteristic p and let M be a finitely generated T -module.
Let FT (−) = (−) ⊗T F e

∗T denote the Frobenius functor. Let Sing T denote the
singular locus of T . If dim (Sing T ∩ SuppM) ≤ 1, then regF e

T (M) = O(pe).

Proof. This follows from Theorem 4.2 in [C]. �

Corollary 3.6. If dim (Sing(R/giR) ∩ V (I)) ≤ 1 for all 1 ≤ i ≤ ν, then reg(R/
(I [p

e] + giR)) = O(pe) for all 1 ≤ i ≤ ν. Consequently, the sets of F -jumping
coefficients of all ideals (homogeneous or not) in S = R/I are discrete.

Proof. Applying Lemma 3.5 to T = R/giR and M = R/I for all 1 ≤ i ≤ ν, we
have that regR/(I [p

e] + uiR) = O(pe). Now Theorem 3.3 finishes the proof. �

Remark 3.7. The assumption that dim (Sing(R/giR) ∩ V (I)) ≤ 1 for all 1 ≤ i ≤ ν
does not seem to be very restrictive. For instance, when dim(R/I) = 2, if I happens
to be a prime ideal and p does not divide the degree of any one of the generators
{g1, . . . , gν}, then dim (Sing(R/(gi)) ∩ V (I)) ≤ 1 is automatically satisfied.
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4. An application

Throughout this section we fix the following notation: R = K[x, y, z, u, v, w],
g1 = yu − xv, g2 = zu − xw, g3 = zv − yw, and S = R/g3R. In this section we
apply Theorem 3.3 to the determinantal ring R/(g1R + g2R + g3R). Our main
aim is to illustrate the usefulness of this theorem with a relatively simple example;
however, the fact that this determinantal ring is gauge bounded is also shown
in [KSS] using direct methods. Our method is perhaps less computational and
might be more generalizable. Although the argument below might seem to involve
formidable computational insight, it is really the formalization of results inspired
by computations with Macaulay2 [GH]. The main technical result in this section is
a description of resolutions over a hypersurface (which are eventually periodic of
period two (cf. [E80])), one such for each value of e ≥ 0. In many cases, including
other determinantal rings, the computation of these resolutions for small values of
e reveals a pattern which can be formally described using methods similar to the
those used below.

Back to our example, we fix the reverse lexicographical order on the monomials
of R with x > y > z > u > v > w and note that the terms of g1, g2 and g3 were
listed in descending order.

We now also fix q = pe for some e; the bulk of this section will be devoted to the
bounding of regR/(g1R + gq2R + gq3R) and we do so by computing an explicit free
resolution of the S-module S/(gq2S + gq3S).

For all 0 ≤ j ≤ q define hj = xjzquq−jvj − xqyjwq; note that h0 = gq2 and
hq = xqgq3 .

Lemma 4.1.

(a) For any a, b ∈ R, let S(a, b) denote the S-polynomial of a and b.
(i) For all 0 ≤ i ≤ j ≤ q we have

S(hj , hi) = uj−ihj − xj−ivj−ihi = xqwq(xj−iyivj−i − yjuj−i)

= −xqwq

j−i∑
k=1

xk−1yj−kuj−i−kvk−1g1.

(ii) For all 0 ≤ j ≤ q we have

S(hj , g
q
3) = vq−jhj − xjuq−jgq3 = wq(xjyquq−j − xqyjvq−j)

= wq

q−j∑
k=1

xj−1+kyq−kuq−j−kvk−1g1.

(iii) For all 0 ≤ j ≤ q−2 we have S(hj , g1) = yhj−xjzquq−j−1vjg1 = hj+1.
(iv) S(hq−1, g1) = yhq−1 − xq−1zqvq−1g1 = xqgq3.
(v) S(gq3, g1) = yugq3 − zqvqg1.

(b) Let G be the row vector [h0, . . . , hq−1, g
q
3, g1]. Then the entries in G form

a Gröbner basis for the ideal g1R+ gq2R+ gq3R.
(c) G = [gq2 , g

q
3, g1]T , where T is a 3× (q + 2) matrix of the form⎡

⎣ 1 y y2 yq−1 0 0
0 0 0 . . . 0 1 0
0 ∗ ∗ ∗ 0 1

⎤
⎦ .
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(d) For all 1 ≤ � ≤ q + 2, let e� denote the �th-standard vector in Rq+2. The
module of syzygies of G is generated by vectors of the form
(i) Vi,j = xj−ivj−iei − uj−iej + (�)eq+2 for all 1 ≤ i < j ≤ q,
(ii) Vi,q+1 = vq−i+1ei − xiuq−ieq+1 + (�)eq+2 for all 1 ≤ i < q + 1,
(iii) Vi,q+2 = yei − ei+1 + (�)eq+2 for all 1 ≤ i < q ,
(iv) Vq,q+2 = yeq − xqeq+1 + (�)eq+2,
(v) Vq+1,q+2 = g1eq+1 − gq3eq+2,
where (�)’s denote unspecified elements in R.

Proof. Statements (a)(i) and (a)(ii) follow from the telescoping sums

j−i∑
k=1

xk−1yj−kuj−i−kvk−1(yu− xv) = yjuj−i − xq+j−iyivj−i

and
q−j∑
k=1

xk+j−1yq−kuq−k−jvk−1(yu− xv) = xjyquq−j − xqyjvq−j ,

respectively. The rest of the statements in (a) follow from straightforward calcula-
tions.

We now know that the S-polynomials between the elements of G reduce to zero
with respect to the elements of G, and hence (b) follows from Buchberger’s Theorem
(cf. [AL, §1.7]).

Part (c) follows inductively from the fact that hj+1 = S(hj , g1) ≡ yhj modulo
g1.

Part (d) follows [AL, Theorem 3.4.1] and the corresponding calculation in part
(a). �

Lemma 4.2. The module of syzygies of the image of (gq2, g
q
3) in S is generated by

the vectors [
yjvq−j

xjuq−j

]
with 0 ≤ j ≤ q.

Proof. We apply [AL, Theorem 3.4.3] and conclude that the module of syzygies of
(gq2, g

q
3, g1) is generated by TVi,j for all 1 ≤ i < j ≤ q + 2, with the vectors Vi,j as

in the previous lemma.

(i) For all 1 ≤ i < j ≤ q

TVi,j =

⎡
⎣ yi−1xj−ivj−i − yj−1uj−i

0
∗

⎤
⎦ ≡

⎡
⎣ yi−1yj−iuj−i − yj−1uj−i

0
∗

⎤
⎦

=

⎡
⎣ 0

0
∗

⎤
⎦ (mod g1).

(ii) For all 1 ≤ i < q + 1,

TVi,q+1 =

⎡
⎣ yi−1vq−i+1

−xiuq−i

∗

⎤
⎦ .
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(iii) For all 1 ≤ i < q

TVi,q+2 =

⎡
⎣ 0

0
∗

⎤
⎦ .

(iv)

TVq,q+2 =

⎡
⎣ yq

−xq

∗

⎤
⎦ .

(v)

TVq+1,q+2 =

⎡
⎣ 0

g1
∗

⎤
⎦ ≡

⎡
⎣ 0

0
∗

⎤
⎦ (mod g1).

�

Lemma 4.3. Let

M =

[
vq yvq−1 . . . yjvq−j . . . yq

−uq −xuq−1 . . . −xjuq−j . . . −xq

]
.

The module of syzygies of the columns of M viewed as vectors in S2 is generated
by the vectors Wi = xei − uei+1 and Ui = yei − vei+1 for all 1 ≤ i ≤ q, where e�
denote the elementary vectors in Rq+1.

Proof. We extend our monomial order from R to R2 by using its term-over-position
extension (cf. [AL, §3.5]). For all 0 ≤ i < j ≤ q we compute the following S-
polynomials:

S

([
yjvq−j

−xjuq−j

]
,

[
yivq−i

−xiuq−i

])
= uj−i

([
yjvq−j

−xjuq−j

])
− xj−i

([
yivq−i

−xiuq−i

])

=

j−1∑
k=1

xk−1yj−kuj−i−kvq−j+k−1

[
g1
0

]
,

where the last equality follows from the telescopic series

j−i∑
k=1

xk−1yj−kuj−i−kvq−j+k−1g1 = yjuj−ivq−j − xj−iyivq−i.

For all 0 ≤ i ≤ q we have S

([
yivq−i

−xiuq−i

]
,

[
g1
0

])
= 0. For all 0 ≤ i < q

S

([
yivq−i

−xiuq−i

]
,

[
0
g1

])
= y

[
yivq−i

−xiuq−i

]
+ xiuq−i−1

[
0
g1

]

= v

[
yi+1vq−i−1

−xi+1uq−i−1

]
and

S

([
yq

−xq

]
,

[
0
g1

])
= yu

[
yq

−xq

]
+ xq

[
0
g1

]
= xv

[
yq

−xq

]
+ yq

[
g1
0

]
.

We can now conclude that the columns of M viewed as vectors in R2 together

with the vectors

[
g1
0

]
and

[
0
g1

]
form a Gröbner basis. We may now apply
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([AL, Theorem 3.7.3]) and list the syzygies among the columns in M viewed as
elements in S2 as uj−iej − xj−iei for all 1 ≤ i < j ≤ q, and yei − vei+1.

We now note that for all 1 ≤ i < j ≤ q,

uj−iej − xj−iei = −
j−i∑
k=1

xk−1uj−i−kWj ,

and the result follows. �

Theorem 4.4. The S-module S/(gq2S + gq3S) has a minimal free resolution

. . .
φ5−→ S2q(−3q − 2k)

φ4−→ S2q(−3q − 2k + 1)

φ5−→ . . .
φ5−→ S2q(−3q − 2)

φ4−→ S2q(−3q − 1)

φ3−→ Sq+1(−3q)
φ2−→ S2(−2q)

φ1−→ S1 −→ 0.

Proof. We take φ1 = [gq2 , g
q
3]; the matrix φ2 is then the one whose columns are

described in the statement of Lemma 4.2 and the matrix φ3 is the one whose
columns consist of the first q + 1 coordinates of the vectors Ui,Wi (1 ≤ i ≤ q)
described in the statement of Lemma 4.3.

The syzygies on the columns of φ3 arise from the relations xUi − yWi ≡ 0
(mod g1) and uUi − vWi ≡ 0 (mod g1) for all 1 ≤ i ≤ q, and so the columns of φ4

are given by xe2j−1 − ye2j and ue2j−1 − ve2j for all 1 ≤ j ≤ q, where e� denotes
the �th elementary vector in S2q.

The syzygies on the columns of φ4 arise from the relations u (xe2j−1 − ye2j) −
x (ue2j−1 − ve2j) and v (xe2j−1 − ye2j) − y (ue2j−1 − ve2j) for all 1 ≤ j ≤ q, so
the columns of φ5 are given by ue2j−1 − xe2j and ve2j−1 − ye2j for all 1 ≤ j ≤ q.

The syzygies on the columns of φ5 are now given by the columns of φ4; hence at
this point we get a period-2 linear resolution. �

Remark 4.5 (Base change for Tor). If A → B is a ring homomorphism, then there
is a homology spectral sequence ([W, Theorem 5.6.6])

E2
i,j = TorBi (Tor

A
j (M,B), N) ⇒ TorAi+j(M,N)

for each A-module M and each B-module N .
When B = A/fA, where f is a non-zero-divisor in A, it is clear that TorAi (M,B)

= 0 except for i = 0, 1. Also, TorA0 (M,B) = M/fM and TorA1 (M,B) = annM f
and the spectral sequence gives rise to a long exact sequence

· · · → TorBi−1(annM f,N) → TorAi (M,N) → TorBi (M/fM,N)

→ TorBi−2(annM f,N) → · · · .
(8)

Corollary 4.6. All sets of jumping coefficients of ideals in R/g1R+g2R+g3R are
discrete.

Proof. Setting A = R, B = S = R/g1R, M = S/(gq2S+gq3S) = R/g1R+gq2R+gq3R,
and N = K in the long exact sequence (8) we obtain

. . . → TorSi−1(S/(g
q
2S + gq3S),K)

→ TorRi (R/(g1R+ gq2R + gq3R),K) → TorSi (S/g
q
2S + gq3S,K) → . . . ,
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where here K denotes the quotient of S by its irrelevant ideal. The previous theorem
now implies that the degrees of elements in a graded K-basis for TorRi (R/(g1R +

gq2R+gq3R),K) are bounded by 3q. Hence reg TorRi (R/(g1R+gq2R+gq3R),K) = O(q),
and by symmetry we also have

reg TorRi (R/(gq1R + g2R + gq3R),K) = regTorRi (R/(gq1R+ gq2R+ g3R),K) = O(q).

The corollary now follows from Theorem 3.3. �

Acknowledgments

We thank Karl Schwede for his useful comments on an early version of this
manuscript.

References

[AL] William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Grad-
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