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REGULAR CAYLEY MAPS FOR CYCLIC GROUPS

MARSTON D.E. CONDER AND THOMAS W. TUCKER

Abstract. An orientably-regular map M is a 2-cell embedding of a connected
graph in a closed, orientable surface, with the property that the group AutoM
of all orientation-preserving automorphisms acts transitively on the arcs of M .
If AutoM contains a subgroup A that acts regularly on the vertex set, then
M is called a regular Cayley map for A. In this paper, we answer a question
of recent interest by providing a complete classification of the regular Cayley
maps for the cyclic group Cn, for every possible order n. This is the first such
classification for any infinite family of groups. The approach used is entirely
algebraic and does not involve skew morphisms (but leads to a classification
of all skew morphisms which have an orbit that is closed under inverses and

generates the group). A key step is the use of a generalisation by Conder and
Isaacs (2004) of Ito’s theorem on group factorisations, to help determine the
isomorphism type of AutoM . This group is shown to be a cyclic extension of
a cyclic or dihedral group, dependent on n and a single parameter r, which
is a unit modulo n that satisfies technical number-theoretic conditions. For
each n, we enumerate all such r, and then in terms of r, we find the valence
and covalence of the map, and determine whether or not the map is reflexible,
and whether it has a representation as a balanced, anti-balanced or t-balanced
regular Cayley map.

1. Introduction

Regular maps are generalisations of the Platonic solids (viewed as embeddings of
their 1-skeletons into the sphere) to symmetrical embeddings of graphs on surfaces
of arbitrary genus. Formally, a regular map M on an orientable surface is a 2-cell
embedding of a connected graph or multigraph into that surface, such that the
group AutoM of all orientation-preserving automorphisms of the embedding has a
single orbit on the set of all arcs (incident vertex-edge pairs) of M . Transitivity
on the arcs ensures that every face has the same size, say t, and that every vertex
has the same valency, say s. The resulting pair {t, s} is called the type of M . The
regular map M is called reflexible if there is an orientation-reversing automorphism
of the embedding, and chiral otherwise.

The study of such maps dates back over 100 years, to observations made by
Dyck, Klein and Heffter among others, and later developed by Brahana, but many
questions about them have remained open until recently. The last decade has seen
a burgeoning of interest in regular maps (and the related topic of dessins d’enfants),
partly motivated by observations made by Grothendieck and Bely̆ı about the action
of the absolute Galois group on maps.
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Regular maps are now viewed from three main perspectives: by the genus of the
carrier surface (see [3,4]), by the underlying graph of the map (see [2,15,16]) or by
the automorphism group (see [9]). See also the recent survey paper [25].

A Cayley graph for the group A with generating set X, denoted by C(A,X), is
the graph with vertex set A and with edges of the form {a, ax} for all a ∈ A and
x ∈ X. It is usually assumed that X is closed under inverses but does not contain
the identity, so that C(A,X) is undirected and simple — with no loops or multiple
edges. Left multiplication by any element of A gives an automorphism of the Cayley
graph C(A,X), and the resulting action of A on C(A,X) is regular on vertices —
that is, transitive with trivial vertex stabilisers. Conversely, if a graph has a group
A of automorphisms acting regularly on its vertices, then the graph is a Cayley
graph C(A,X) for some generating set X. In fact, if one specifies which vertex
is labelled by the identity, then the group action by A identifies the neighbours of
that vertex with the generating set X; see [11] for details.

Just as a Cayley graph can be viewed as a graph which admits a regular group
action on its vertices, a Cayley map is a map M whose automorphism group has a
subgroup acting regularly on the vertex set. In particular, the action of any such
subgroup A makes the underlying graph of M a Cayley graph C(A,X). A regular
Cayley map for the group A is a regular map that is also a Cayley map for A.

In [6] the authors and Jajcay initiated a substantial investigation of regular
Cayley maps for abelian groups, and this was taken further by the first author
with Kwon and Širáň in [8], producing a curious theorem about the reflexibility
of a regular Cayley map for a cyclic group Cn. At the time the latter theorem
was written up for publication, we noted that a proof would be much easier if the
generating set X could be assumed to contain an element of order n; that, however,
is not obviously true, and this paper grew out of our (successful) attempt to show
it is true.

In fact, we can now provide a complete classification of all regular Cayley maps
for finite cyclic groups Cn. In this paper, we show there is a one-to-one correspon-
dence between such maps and certain presentations for their automorphism groups,
each of which is a cyclic extension of either Cn or the dihedral group Dn/2 (of order
n). The classification splits into two classes, according to whether n is odd or even,
using the ‘BCD’ structure of the automorphism group (as considered in [6]).

Specifically, we prove the following. For odd n, regular Cayley maps for Cn

are in one-to-one correspondence with roots of −1 mod n, and for any such root
r of (even) multiplicative order s, the orientation-preserving automorphism group
of the map is the metacyclic group G(n, r) = 〈 v, y | vn = ys = 1, yvy−1 = vr 〉
of order ns. On the other hand, for (even) n = 2m, regular Cayley maps for Cn

are in one-to-one correspondence with units r mod n having the property that if
b is the largest divisor of m coprime to r−1, then either b = 1, or r is a unit
mod b of multiplicative order 2k where k is coprime to m/b. In each such case,
the orientation-preserving automorphism group is a semi-direct product of Dm by
Cs, with presentation H(m, r) = 〈 x, v, y |x2 = vm = ys = 1, xvx = v−1, yvy−1 =
vr, yxy−1 = xv 〉, where s is the order of the automorphism of 〈x, v〉 ∼= Dm taking
x to xv and v to vr.

In addition to this classification, we give enumeration formulae for the number
of regular Cayley maps for Cn for any given n, and describe exactly which of these
maps are reflexible, and determine their types. We also consider how each such map
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can be represented as a regular Cayley map for Cn in different ways, and determine
exactly which representations are balanced, anti-balanced or t-balanced for some t
(see [7]).

We believe this is the first complete classification of all regular Cayley maps for
an infinite family of groups. Partial classifications have been achieved by others for
various kinds of regular Cayley maps for cyclic, dicyclic, dihedral, semi-dihedral and
generalised quaternion groups; see [18–21,24,26] for example. We also remark that
the underlying graphs of regular Cayley maps for cyclic groups are arc-transitive
circulants, which were classified (independently) by Kovács [17] and Li [22], but we
do not need to use that classification here.

2. Preliminaries

We begin with some further background on regular maps. Details can be found
in [4] or [10], for example.

Let M be a regular map on an orientable surface, with orientation-preserving
automorphism group G = AutoM . Then G acts transitively on the arcs of M , and
hence also transitively on the vertices, edges and faces of M . As noted earlier, this
implies that every face has the same size, say t, and that every vertex has the same
valency, say s, and then the pair {t, s} is called the type of the regular map M .

Next, if (v, e, f) is any vertex-edge-face incident triple, then there exist automor-
phisms R and S in G that induce single-step rotations (of orders t and s) about
the face f and vertex v respectively, such that RS is an automorphism of order
2 that acts like a half-turn around the midpoint of the edge e. By connectedness
(and the fact that every automorphism is uniquely determined by its effect on any
any vertex-edge-face incident triple), these two automorphisms generate the group
G = AutoM . We will take the alternative generators x = RS and y = S−1, and call
(x, y) a canonical generating pair for the map M . These two elements satisfy the
relations x2 = ys = (xy)t = 1, which are defining relations for the (2, s, t) triangle
group.

The vertices, edges and faces of M can be labelled with left cosets of the cyclic
subgroups generated by y, x and xy respectively, in such a way that the group G
acts by left multiplication, and incidence is given by non-empty intersection. This
allows us to reconstruct a regular map from its automorphism group alone. Indeed
we can view a regular map as nothing more than a generating pair (x, y) for a finite
group G, such that x is an involution. For any two such pairs (x, y) and (x′, y′), the
corresponding regular maps are isomorphic if and only if there is an isomorphism
from G = 〈x, y〉 to G′ = 〈x′, y′〉 taking x to x′ and y to y′. Note that for a given
group G, altering x may change the order of xy and hence the face size t, while
altering y may change the orders of both y and xy and hence both the valence s
and the face size t, but the number of edges (viz. |G|/2) remains unchanged.

[For fixed t and s, regular maps of type {t, s} are in one-to-one correspondence
with normal subgroups of finite index in the (2, s, t) triangle group Δ = Δ(2, s, t)
that are torsion-free, since these are precisely the ones that contain no non-trivial
powers of the canonical generators of orders 2, s and t, and in each case the factor
group Δ/N is the orientation-preserving automorphism group of the map.]

The oppositely oriented regular map for M (or ‘mirror image’ of M) has the
same type as M , and the same orientation-preserving automorphism group G, but
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with generating pair (x−1, y−1). It follows that the regular map M is reflexible if
and only if there is an automorphism of the group G taking x to x (= x−1) and y
to y−1.

In this paper, because we are dealing with Cayley graphs, we assume there are
no multiple edges. The relationship of this assumption to the group structure of
G = 〈x, y〉 is easily explained. The edges incident to the vertex 〈y〉 are those
labelled with cosets yi〈x〉, while the vertices adjacent to 〈y〉 are those labelled with
cosets yix〈y〉. If there are multiple edges, then by arc-transitivity there must be at
least two edges between the vertices labelled 〈y〉 and x〈y〉, in which case some edge
coset yi〈x〉 with 0 < i < s has non-empty intersection with x〈y〉, or equivalently,
yix = xyj for some j. In that case x−1yix = yj , which happens if and only if some
non-trivial subgroup of 〈y〉 is normalised by x and is therefore normal in 〈x, y〉 = G.
Thus to have a simple underlying graph, we require that 〈y〉 contains no non-trivial
normal subgroup; that is, the vertex-stabiliser Y = 〈y〉 must be core-free in G.

The Euler characteristic χ and the genus g of the carrier surface (and hence of
the map M) are then given by the Euler-Poincaré formula

2− 2g = χ = V − E + F = |G|/s− |G|/2 + |G|/t = |G|(2t− ts+ 2s)/2ts.

The (geometric) dual of the regular map M is also regular, with type {s, t}, and
has the same genus and characteristic as M . For this reason, the face-size of M
is often called the co-valence of M . On the other hand, if M is a regular Cayley
map for the group A, then the dual of M might not be a regular Cayley map for
A, since the action of A could have non-trivial face stabilisers.

Next, we give some more background on regular Cayley maps.
Suppose M is a regular Cayley map for the group A. Let G = AutoM , and let

(x, y) be a canonical generating pair, with y stabilising a vertex v, and x stabilising
an incident edge e. Since A acts regularly on the vertices of M , we know that
G = AY with A ∩ Y = {1}; that is, A is complementary to Y in G. Conversely,
if G = 〈x, y〉, where x is an involution and G has a subgroup A complementary
to Y = 〈y〉, then G is the orientation-preserving automorphism group of a regular
Cayley map for A with canonical generating pair (x, y).

The underlying graph of M is a Cayley graph C(A,X) for some generating set X
for A. By vertex-transitivity, we may label the vertex v with the identity element
of A, and then the neighbours of v are the vertices labelled with the elements of X,
say x1, x2, . . . , xs in anti-clockwise order. The embedding of C(A,X) in the surface
defines a cyclic rotation on those neighbours, so that yxi ∈ xi+1Y for all i (mod s).
This extends to a mapping ϕ : A → A with the property that for each a ∈ A,

ya = ϕ(a)yπ(a) for some π(a) ∈ Zs.

The function ϕ : A → A is called a skew morphism of A, with associated power
function π : A → Zs (see [14]). This skew morphism has the special property
that one of its orbits, namely X = {x1, x2, . . . , xs}, is closed under inverses and
generates A. We call any such orbit a good orbit of ϕ. Also with X and ϕ so
defined, we may denote the labelled regular Cayley map M by Cay(A,X,ϕ).

Note that there may be other subgroups of G isomorphic to A that are com-
plementary to Y , so there may be many different ways to label the vertices by the
elements of A to represent M as a Cayley map for A. We will take this observation
further in Section 7. Note also that there may be more than one good orbit X for
the skew morphism ϕ, and the regular Cayley maps associated with these might or



REGULAR CAYLEY MAPS FOR CYCLIC GROUPS 3589

might not be isomorphic. From our algebraic viewpoint of a regular Cayley map as
a generating pair (x, y) for a group G with complementary factorisation AY , the
cyclically ordered generating set X that prescribes the embedding is determined
by the choice of x: since the vertices are cosets of Y = 〈y〉, the ith element xi of
X is the unique element of A such that xi ∈ yixY . Hence in particular, if there
is an automorphism of the group G = AY taking (x, y) to (x′, y), then there is
an automorphism of A taking the cyclically oriented generating set X for x to the
corresponding one for x′.

The regular Cayley map Cay(A,X,ϕ) is balanced if either all elements of X are
involutions, or all of them are non-involutions and the cyclic ordering of the elements
of X around the identity vertex has the form (x1, x2, . . . , xs/2, x

−1
1 , x−1

2 , . . . , x −1
s/2 ).

Equivalently, Cay(A,X,ϕ) is balanced if the skew morphism ϕ has the property
that ϕ(x−1) = ϕ(x)−1 for all x ∈ X. In that case, the skew morphism ϕ is actually
an automorphism of A, so A is a normal subgroup of G; see [6, Proposition 2.3].
Also in that case, ϕs/2 inverts every element of X, and the power function takes
value π(x) = 1 at every x ∈ X. Conversely, if A is normal in G, then the ϕ-ordering
(x, ϕ(x), ϕ2(x), . . . , ϕs−1(x)) of the elements of X gives a balanced map. Note also
that Y may have many complements in G that are isomorphic to A, and it can
happen that the same regular Cayley map M is balanced for one such complement
but not balanced for another.

Similarly, if the ordering of X has the form (x1, x2, . . . , xs/2, x
−1
s/2 , . . . , x

−1
2 , x−1

1 )

when s is even or (x1, x2, . . . , x(s−1)/2, xs/2, x
−1

(s−1)/2, . . . , x
−1
2 , x−1

1 ) when s is odd,

then Cay(A,X,ϕ) is anti-balanced. Equivalently, Cay(A,X,ϕ) is anti-balanced if ϕ
has the property that ϕ(x−1) = (ϕ−1(x))−1 for all x ∈ X. In that case, the power
function takes value π(x) = −1 (in Zs) at every x ∈ X.

More generally, if the power function π takes constant value j on X for some
j ∈ Zs, then the map M is said to be j-balanced. Regular j-balanced Cayley maps
were investigated in detail in [7]. In this case, the skew morphism ϕ induces an
automorphism on the subgroup K = {a ∈ A : π(a) = 1}, which is called the kernel
of ϕ. The kernel K has index 1 or 2 in A, depending on whether j = 1 or j �= 1.
Hence in particular, if |A| is odd, then A has no j-balanced regular Cayley maps for
j �= 1 (modulo the valence).

3. The classification of regular Cayley maps

for a given cyclic group

We now give the major part of our classification of regular Cayley maps for
cyclic groups. Although we make connections with the skew-morphism viewpoint,
our approach is almost entirely group-theoretic, and made possible by the following
corollary of a theorem of Conder and Isaacs given in [6]:

Theorem 3.1. If G = AY is the automorphism group of a regular Cayley map for
the finite abelian group A, and G′ is the commutator subgroup of G, then G′/(G′∩A)
is cyclic and G′ is isomorphic to a subgroup of A.

This is an extension of a theorem of Ito [12], which says that the commutator
subgroup of any group expressible as a product AB of two abelian subgroups is
abelian. While the proof of Ito’s theorem is elegant but elementary, we know of no
easy proof of the above, even in the case where A and B are both cyclic, and so we
refer the reader to the paper [5] by Conder and Isaacs for its proof.
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In particular, when A is cyclic, it follows that G′ is cyclic. All of the rest of the
structure of G that we need when A is cyclic holds also when A is abelian, and was
exploited at considerable length in [6]. We can summarise it as follows:

Theorem 3.2. Let A = Cn be the cyclic group of order n, and let G be the
orientation-preserving automorphism group of a regular Cayley map for A with
canonical generating pair (x, y). Let Y = 〈y〉 be the vertex-stabiliser, of order s
and core-free in G, let C = G′ be the commutator subgroup of G, and let D be the
normal closure of the subgroup 〈x〉 in G.

(a) If n is odd, then G = CY with C∩Y = {1}, and C ∼= A = Cn. In particular,
if v is a generator of C, then the group G has defining presentation

G(n, r) = 〈 v, y | vn = ys = 1, yvy−1 = vr 〉,
where r is a root of −1 mod n, of multiplicative order s. Moreover, there is an
automorphism of G taking (x, y) to (vys/2, y).

(b) If n is even, say n = 2m, then G = DY with D ∩ Y = {1}, and D is
isomorphic to the dihedral group Dm, with C as its index two cyclic subgroup. In
particular, if v is a generator of C, then D = 〈x, v〉, and the group G has defining
presentation

H(m, r) = 〈 x, v, y | vm = x2 = ys = 1, xvx = v−1, yvy−1 = vr, yxy−1 = xv 〉,
where r is a unit mod m, and s is the order of the automorphism of D = 〈x, v〉
induced by conjugation by y.

Proof. First, note that G/D is cyclic, generated by the coset Dy, and therefore D
contains the commutator subgroup C, and G = DY . Moreover, since G/D can be
obtained from the abelianisation G/C of G by making trivial the coset containing x,
we know that C has index at most 2 in D. Next, since C is cyclic (by Theorem 3.1),
every subgroup of C is characteristic in C and therefore normal in G, and then since
Y is core-free in G, it follows that C ∩ Y = {1}.

Now suppose G = CY . Then |G| = |C||Y | and therefore |C| = |G|/|Y | = |A| =
n. In particular, C is isomorphic to Cn. Taking v as a generator for C gives
yvy−1 = vr for some unit r mod n, and G = CY = 〈v, y〉. The multiplicative order
of r must be s, for otherwise some non-trivial subgroup of Y = 〈y〉 centralises v and
is then normal in 〈v, y〉 = G, which is impossible since Y is core-free in G. Also n
must be odd, for if n were even, then the unit r would have to be odd, in which case

all conjugates of commutators vyiv−1y−i = v1−ri would lie in the proper subgroup
〈v2〉 of C.

The involution x must be expressible in the form viyj for some i, j, and then
since

1 = x2 = (viyj)2 = vi(1+rj)y2j ,

we have i(1 + rj) ≡ 0 mod n and 2j ≡ 0 mod s. On the other hand,

〈v, y〉 = G = 〈x, y〉 = 〈viyj , y〉 = 〈vi, y〉,
with 〈vi〉 being normal in G, so i must be a unit mod n, and thus 1+rj ≡ 0 mod n.
In particular, r is a root of −1 mod n, and s must be even. It follows that j = s/2.
Finally, the relations vn = ys = 1 and yvy−1 = vr are preserved when v is replaced
by vi, so there exists an automorphism of G taking x = viys/2 to vys/2.

Next, suppose instead that G �= CY . Then C �= D, so C has index 2 in D.
Moreover, since C is generated by the commutators xyixy−i, each of which is
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inverted by conjugation by the involution x, we find that conjugation by x inverts all
elements of C, and thereforeD is a dihedral group, with C a cyclic subgroup of index
2. Also |G| > |CY | = |C||Y | (since C ∩ Y = {1}), so |C| < |G|/|Y | = |A|, while on
the other hand, 2|C| = |D| ≥ |DY |/|Y | = |G|/|Y | = |A|, so 2|C| = |D| = |A| = n.
In particular, n is even, say n = 2m, and C ∼= Cm while D ∼= Dm.

Taking v as a generator for C gives yvy−1 = vr for some unit r mod m, and
xvx−1 = v−1 (by the observations above about commutators). Also xyxy−1 ∈ C
and hence xyxy−1 = vi for some i, which gives yxy−1 = xvi, and it then follows
easily that all conjugates of x by powers of y lie in the subgroup generated by x
and vi. Thus 〈x, v〉 = D = 〈x, vi〉, and so i is a unit mod m. In particular, we
can replace v by vi if necessary, giving yxy−1 = xv (and preserving the relations
xvx−1 = v−1 and yvy−1 = vr). Hence we have the presentation in case (b). Finally,
s is the order of the automorphism of D induced by conjugation by y, since Y is
core-free in G. �

Corollary 3.3. If M is a regular Cayley map for the cyclic group Cn, then M is a
balanced regular Cayley map for Cn when n is odd, and a balanced regular Cayley
map for Dn/2 when n is even.

In Theorem 3.2, we began with a regular Cayley map and found information
about its automorphism group G. To complete our classification, we start with the
group A and then want to construct all possibilities for the map. There are two
potential problems with this approach.

In the first case, where n is odd, the group presentation mentions nothing about
the involution x, yet we need to be sure that there is such an involution, which
together with y generates G. The condition in Theorem 3.2 that r is a root of −1

mod n does the trick: it lets us choose x = vys/2, because vys/2vys/2 = vvr
s/2

ys =
vv−1 = 1. Moreover, once we have this x, all other choices for x define the same
map, since we know there is always an automorphism of G taking (x, y) to (vys/2, y).
Also the map is a regular Cayley map for the subgroup generated by v, which is
cyclic of order n.

In the second case, where n is even, the involution x is given as a generator in
the presentation for G. Also x and y generate G since yxy−1 = xv. The problem
here is that if we start with the given presentation for G, it is not easy to see a
complementary factorisation G = AY for G with A ∼= Cn; in other words, we do
not have an obvious element a of order n with the property that 〈a〉 ∩ 〈y〉 = {1},
and in fact there might not be one! Once we know there is one, however, the same
regular Cayley map will result, whichever elements we choose as the generators.

Definition 3.4. Call the group G(n, r) admissible if r is a root of −1 mod n, and
similarly, call the group H(m, r) admissible if it has an element a of order 2m such
that 〈a〉 ∩ 〈y〉 = {1}. Then also call the pair (n, r) admissible if either n is odd and
the group G(n, r) is admissible, or n = 2m and the group H(m, r) is admissible.

Theorem 3.5. Two regular Cayley maps for Cn are isomorphic if and only if their
orientation-preserving automorphism groups are isomorphic. Moreover, the regular
Cayley maps for Cn are in one-to-one correspondence with admissible pairs (n, r).

Proof. Clearly if the maps are isomorphic, then so are their groups. Conversely,
we observe that different values for the parameter r give different groups, since the
value of r tells us how G/G′ acts by conjugation on the commutator subgroup G′,
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and this is uniquely determined by the isomorphism class of the group. The rest
follows from Theorem 3.2 and the comments immediately after Corollary 3.3. �

Because of the above, it makes sense to introduce the following:

Definition 3.6. For any admissible pair (n, r), let M(n, r) be the regular Cayley
map given by Theorem 3.2.

Theorem 3.5 now tells us that every regular Cayley map for a cyclic group is
isomorphic to one (and only one) such map M(n, r). Also AutoM(n, r) = G(n, r)
when n is odd, while AutoM(n, r) = H(m, r) when n = 2m.

We will develop more precise criteria for admissibility and other properties in
subsequent sections. What will become clear is that Theorem 3.2 allows us to reduce
many important questions about regular Cayley maps to elementary number theory.
As the first instance of this, we give the following characterisation of reflexibility.

Theorem 3.7. For odd n, the only reflexible regular Cayley map M(n, r) is the
equatorial map on the sphere with n vertices of valence 2. For even n = 2m, the
regular Cayley map M(n, r) is reflexible if and only if r2 ≡ 1 mod m.

Proof. Let M = M(n, r), and let (x, y) be a canonical generating pair for G =
AutoM . We know that M is reflexible if and only if there is an automorphism θ of
G fixing x and taking y to y−1.

For odd n, we have G = G(n, r) = 〈v, y〉 for some r, and the required automor-
phism θ would fix the involution ys/2, and hence also fix v = xys/2. But then θ

would have to take v = y−1vry to yvry−1 = vr
2

, in which case r2 ≡ 1 mod n. This
forces s = 2 and r ≡ −1 mod n, giving the valence 2 map on the sphere.

Similarly, for (even) n = 2m we have G = H(m, r) = 〈 x, v, y〉 for some r, and
the automorphism θ must preserve the commutator subgroup C = 〈v〉, so θ takes v
to vj for some j coprime to m. In this case, applying θ to the relation yvy−1 = vr

gives y−1vjy = vjr and therefore vj = yvjry−1 = vjr
2

, so that vj(r
2−1) = 1, which

in turn gives r2 ≡ 1 mod m. Conversely, if r2 ≡ 1 mod m, then the defining
relations for H(m, r) are preserved by replacing (x, v, y) by (x, v−r, y−1), and so
there exists an automorphism θ of G taking (x, y) to (x, y−1). For example, the
relation yxy−1 = xv is equivalent to y−1xvy = x and hence is taken under this
replacement to yxv−ry−1 = x, which holds as a relation since yxy−1 = xv and

yv−ry−1 = v−r2 = v−1. �
There is an interesting phenomenon when r2 ≡ 1 mod m as in Theorem 3.7. In

that case, let b be the largest divisor of m coprime to r−1. Then since b(m/b) = m
divides r2−1 = (r+1)(r−1), we find that r ≡ −1 mod b, while r = 1 mod p for all
primes p dividing m/b. Note that b is necessarily odd, since if m were even, then r
would be odd, in which case r−1 is even, but coprime to b. It could be tempting to
think that also r = 1 mod m/b, but that does not always hold; for example, when 8
divides m, there are at least four square roots of 1 mod m, but not all are congruent
to 1 mod 8, let alone congruent to 1 mod m/b. We will generalise this in the next
two sections, where we derive a number-theoretic condition for the group H(m, r)
to be admissible, and determine the types of the regular Cayley maps M(n, r).

4. Orders of elements in metacyclic groups

Before proceeding much further, we need some number theory that enables cal-
culation of the orders of certain elements in our groups G(n, r) and H(m, r).
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The following notation will ease the exposition considerably: for given positive
integers t and k, define tk to be the sum 1+ t+ t2 + · · ·+ tk−1. With this notation,
it is an easy algebraic exercise to see that (t− 1)tk = tk − 1 for all k, and also that
tjk = tj(t

j)k = tk(t
k)j for all j and k.

Lemma 4.1. Let m, d and t be positive integers for which td ≡ 1 mod m. Then in
the semi-direct product Cm�tCd, with presentation 〈 u,w |um = wd = 1, wuw−1 =
ut 〉, the following hold :

(a) (uw)k = utkwk for all k.
(b) The order of uw is equal to d times the additive order of td in Zm, that is,

dm/gcd(td,m).
(c) In particular, uw has order m if and only if d divides m and the additive

order of td in Zm is m/d, or equivalently, if and only if gcd(td,m) = d.
(d) The subgroups 〈uw〉 and 〈w〉 have trivial intersection if and only if every

positive integer k for which tk ≡ 0 mod m is a multiple of d.

Proof. (a) (uw)k=u(wuw−1)(w2uw−2) . . . (wk−1uw−(k−1))wk=u1+t+t2+···+tk−1

wk

= utkwk.
(b) If 1 = (uw)k = utkwk, then wk = 1 because 〈u〉 ∩ 〈w〉 = {1}, and so k must

be a multiple of d (the order of w). Then since (uw)d = utd , it follows that the
order of uw is d times the additive order of td in Zm, viz. m/gcd(td,m).

(c) By (b), the order of uw is m if and only if gcd(td,m) = d, which occurs if
and only if d divides m and m/d = m/gcd(td,m).

(d) Let k be any integer for which (uw)k lies in the intersection J = 〈uw〉∩ 〈w〉.
Then utk = (uw)−1wk lies in 〈w〉, so must be trivial (since 〈u〉 ∩ 〈w〉 = {1}), and
therefore tk ≡ 0 mod m. On the other hand, if tk ≡ 0 mod m, then (uw)k =
utkwk = wk and therefore wk lies in J . The rest follows easily from this. �

The next piece of number theory helps us deal with prime-powers:

Lemma 4.2. For any prime-power pe, let t be a positive integer of the form t =
1 + cpf , where c is coprime to p and 0 < f ≤ e.

(a) If p is odd, then the order of t as a unit mod pe is pe−f , and moreover, if
td ≡ 1 mod pe, then td ≡ d mod pe, and so gcd(td, p

e) = gcd(d, pe).
(b) If p = 2, and e = 1 or f > 1, then the order of t as a unit mod 2e is 2e−f ;

moreover, if td ≡ 1 mod 2e, then td ≡ d mod 2e when e = 1, while td ≡ d
mod 2e−1 when f > 1, and in both cases, gcd(td, 2

e) = gcd(d, 2e).
(c) If p = 2, e > 1 and f = 1, then the order of t as a unit mod 2e divides

2e−2 if e > 2, or is 2 if e = 2, and if td ≡ 1 mod 2e, then td ≡ (1 + t)(d/2)
mod 2e.

In particular, in all cases the order of t as a unit mod pe divides pe−1.

Proof. First suppose p is odd. Then using the binomial theorem, it is easy to see

that tp
i

= 1+ c′pi+f where c′ ≡ c mod p, for all i > 0, and it follows that the order
of t as a unit mod pe is pe−f . In particular, if td ≡ 1 mod pe then pe−f divides d.
Also again by the binomial theorem, we have

td =
td − 1

t− 1
=

∑d
k=1 (

d
k) c

kpkf

cpf
= d+

d∑
k=2

(dk) c
k−1p(k−1)f ,
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and since d is divisible by pe−f , it follows by induction on k that (dk) p
(k−1)f is

divisible by pe for all k > 1. (Note: the number of occurrences of p in the prime
factorisation of the denominator k! of (dk) grows more slowly than (k − 1)f , as a
function of k.) Thus td ≡ d mod pe, and this proves (a).

Next, suppose p = 2, so t = 1 + c2f . If e = 1, then f = 1 (because 0 < f ≤ e)
and so pe = 2 and t = 1 + 2c ≡ 1 mod 2e, and the conclusions are trivial.

If p = 2 and f > 1, then just as in the previous case, the order of t as a unit
mod 2e is 2e−f , and so d is divisible by 2e−f whenever td ≡ 1 mod 2e. To verify
that td ≡ d mod 2e−1, we proceed as in case (a), but we note that the term for
k = 2 in the final sum is (d2) c 2

f , and that this term is divisible by 2e−1, but not
necessarily by 2e. All of the higher terms are divisible by 2e for the same reason as
in case (a), namely that the number of occurrences of 2 in the prime factorisation
of the denominator k! of (dk) is no more than (k − 1)f , when f > 1. In particular,
since td ≡ d mod 2e−1 with e > 1, we have gcd(td, 2

e) = gcd(d, 2e), proving (b).
Finally, suppose p = 2 and f = 1 < e. Then t = 1 + 2c where c is odd, so

t2 = 1 + 4c(1 + c) = 1 + c′2j where c′ is odd and j ≥ 3. If e = 2, then t ≡ 3
mod 2e, so t2 ≡ 1 mod 2e and t has order 2 as a unit mod 2e, while if e > 2,
then by case (b), the order of t2 as a unit mod 2e divides 2e−3, so the order of t
as a unit mod 2e divides 2e−2. In both cases, if td ≡ 1 mod 2e, then d is even
and td ≡ t2(t

2)d/2 ≡ (1 + t)(t2)d/2, and then since t + 1 is even and td/2 ≡ d/2 or

d/2 + 2e−1 mod 2e, it follows that td ≡ (1 + t)(d/2) mod 2e, proving (c). �

We can apply this to obtain the following:

Lemma 4.3. Let m, d and t be positive integers for which td ≡ 1 mod m, and let
u and w be generators of the semi-direct product Cm �t Cd, satisfying the relations
um = wd = 1 and wuw−1 = ut, as in Lemma 4.1.

(a) If b is the largest divisor of m that is coprime to t − 1, then b is odd.
Moreover, if m �≡ 0 mod 4 or r ≡ 1 mod 4, then gcd(td,m/b) = gcd(d,m/b),
so the additive order of td in Zm/b is equal to (m/b)/gcd(d,m/b).

(b) If uw has order m, then d divides m, and t ≡ 1 mod m/d. Moreover, if
uw has order m and every positive integer k such that tk ≡ 0 mod m is a
multiple of d, then t ≡ 1 mod p for every prime p that divides m.

Proof. (a) If m is odd, then b is odd, while if m is even, then t is odd and so t− 1
is even, which again implies that b is odd. Hence in particular, any power of 2
dividing m will also divide m/b. Now let pe be any maximal prime-power divisor of
m/b. Then t ≡ 1 mod p, by definition of b. If p is odd, then gcd(td, p

e) = gcd(d, pe),
by case (a) of Lemma 4.2. On the other hand, if p = 2 and t = 1 + c2f where c is
odd, then our assumption that m �≡ 0 mod 4 or r ≡ 1 mod 4 gives e = 1 or f > 1,
and we can apply case (b) of Lemma 4.2. It follows that gcd(td, p

e) = gcd(d, pe)
for all such pe, so gcd(td,m/b) = gcd(d,m/b), and the additive order of td in Zm/b

is (m/b)/gcd(d,m/b).
(b) Suppose uw has order m. Then by Lemma 4.1(c), d divides m and the

additive order of td in Zm is m/d. On the other hand, (t− 1)td ≡ td − 1 ≡ 0 mod
m, so this implies that t− 1 is a multiple of m/d, and hence t ≡ 1 mod m/d.

Next, suppose that every positive integer k for which tk ≡ 0 mod m is a multiple
of d. Then by Lemma 4.1(d), the subgroups 〈uw〉 and 〈w〉 have trivial intersection.

Let p be any prime divisor of m, but suppose that t �≡ 1 mod p. Also let k be
the multiplicative order of t (as a unit) mod p. Then k ≤ p − 1, and k divides d,
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which divides m. Moreover, (t − 1)tk = tk − 1 ≡ 0 mod p, but we have assumed
that t− 1 �≡ 0 mod p, and it follows that tk ≡ 0 mod p. Thus p divides both tk and
m, and in particular, p ≤ gcd(tk,m). On the other hand, consider the subgroup
K = 〈utk , wk〉. Since K ∼= 〈utk〉� 〈wk〉, the order of K is m/gcd(tk,m) times d/k.
But also (uw)k = utkwk, from which it follows that K = 〈(uw)k, wk〉, and since
〈uw〉∩〈w〉 = {1} this shows that the order of K is at least (m/k)(d/k). Comparing
these two gives gcd(tk,m) ≤ k, which is impossible since k < p ≤ gcd(tk,m).

Thus t ≡ 1 mod p for every prime p dividing m. �

5. Admissibility and type

In this section, we derive a purely number-theoretic condition for a pair (2m, r)
to be admissible, and find the type of the regular Cayley map M(n, r) for every
admissible pair (n, r). To do this, we consider two kinds of pairs (m, r), associated
with the cases of Lemma 4.2. We call a pair (m, r) nice if either m �≡ 0 mod 4 or
r ≡ 1 mod 4.

Theorem 5.1. Let m be any positive integer, and let r be any unit modulo m.
Define b to be the largest divisor of m that is coprime to r − 1. Then the pair
(2m, r) is admissible if and only if either b = 1, or r is a root of −1 mod b of
multiplicative order 2k where k is coprime to m/b. Furthermore, if this holds, then
in the group H(m, r), the element a = xviyj generates a cyclic group of order 2m
complementary to 〈y〉 if and only if j is coprime to m/b and rj ≡ −1 mod p for
every prime divisor p of b (with no restriction on i).

Proof. We first prove necessity. Suppose that a = xviyj generates a cyclic group of
order 2m intersecting Y = 〈y〉 trivially. We will show that j is coprime to m/b and
that rj ≡ −1 mod p for every prime p dividing b, and then show that either b = 1,
or r is a root of −1 mod b of multiplicative order 2k where k is coprime to m/b.

Consider xvi, which is an involution in the dihedral subgroup 〈x, v〉 ∼= Dm. Since
a = (xvi)yj , we have 〈xvi, y〉 = 〈a, y〉 = H(m, r), and therefore (x′, y) is a canonical
generating pair for some regular Cayley map for C2m with orientation-preserving
automorphism group H(m, r). By Theorems 3.2 and 3.5, all such pairs for H(m, r)
are equivalent, and hence we can assume without loss of generality that xvi = x,
which means we can take i = 0 and a = xyj .

Now a2 = vrjy2j lies in 〈v, y〉, which has orderms. On the other hand, 〈a2, y〉 has
order at least ms (since a has order 2m), so 〈vrj , y〉 = 〈vrjy2j , y〉 = 〈a2, y〉 = 〈v, y〉,
and it follows that vrj has order m. In particular, rj is coprime to m.

For the moment, let r′ = r2j , and let v′ = vrj and y′ = y2j , and choose x′ = xvk

(for some k) so that the elements x′, v′ and y′ satisfy the presentation for H(m, r′),
with s′ being the order of the automorphism of 〈x′, v′〉 ∼= Dm that takes x′ to

x′v′ and v′ to (v′)r
′
. Then since v′y′ = vrjy2j (= a2) has order m, we find by

Lemma 4.3(b) that r2j ≡ 1 mod p for every prime p dividing m. In particular,
every such prime p divides r2j − 1 = (rj − 1)(rj + 1), and hence divides rj − 1 or
rj + 1.

If p divides m/b, then p divides r− 1 and hence divides (r− 1)rj = rj − 1. Also
since r ≡ 1 mod p in this case, we have rj ≡ 1 + 11 + · · · + 1j−1 ≡ j mod p, and
therefore j is coprime to p. It follows that j is coprime to m/b.
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On the other hand, if p divides b, then p is coprime to r− 1 (by definition of b),
and hence also to (r − 1)rj = rj − 1, from which it follows that p divides rj + 1.
Thus rj ≡ −1 mod p, as required.

Also b is odd, by Lemma 4.3(a), and so p is odd. Hence by Lemma 4.2(a), if pe

is the largest power of p dividing b, then the order of r2j as a unit mod pe divides
pe−1, and therefore divides b. It follows that rbj ≡ −1 mod pe for all such p, and
therefore rbj ≡ −1 mod m. In particular, r is a root of −1 mod b.

Finally, let k be the smallest positive integer such that rk ≡ −1 mod b. If b > 1,
then r has order 2k as a unit mod b. Furthermore, since rbj ≡ −1 mod m, we find
that k divides bj, and then since both b and j are coprime to m/b, it follows that
also k is coprime to m/b.

Next, we prove sufficiency. Suppose that r is a root of −1 mod b, and k is the
smallest positive integer such that rk ≡ −1 mod b, and k is coprime to m/b. Note
that by the definition of b, we have r ≡ 1 mod p for every prime p dividing m/b.

Take a = xyj for any integer j coprime to m/b such that rj ≡ −1 mod p for every
prime p dividing b. (For example, we can take j = k, hence such a j always exists.)
We need to show that the cyclic subgroup A generated by a is complementary to
Y = 〈y〉. Since a2 = vrjy2j lies in 〈v, y〉, which does not contain x and therefore
does not contain xvj = a, we know that a2 generates a proper subgroup of A, and
hence we need to show that a2 = vrjy2j has order m.

For every prime p dividing b, we have (r − 1)rj = rj − 1 ≡ −1− 1 ≡ −2 mod p,
so rj is not divisible by p. On the other hand, for every prime p dividing m/b, we
have rj ≡ 1 + 11 + · · ·+ 1j−1 ≡ j mod p, and since gcd(j,m/b) = 1, again we find
that rj is not divisible by p. Thus gcd(rj ,m) = 1, and in particular, vrj has order
m.

Now let t = r2j , and let d be the order of y2j . Then td ≡ (r2j)d ≡ 1 mod m.
Also conjugation by y2j takes vrj to (vrj )t, and hence by Lemma 4.1(c), we know
that vrjy2j has order m if and only if gcd(td,m) = d. In turn, since b and m/b
are coprime, this is equivalent to having gcd(td, b) = gcd(d, b) and gcd(td,m/b) =
gcd(d,m/b).

For the former, note that for every maximal prime-power pe dividing b we have
t ≡ (rj)2 ≡ (−1)2 ≡ 1 mod p, and as p is odd, Lemma 4.2(a) gives td ≡ d mod
pe. Thus td ≡ d mod b, and it follows that gcd(td, b) = gcd(d, b). For the latter,
the same argument applies to maximal prime-power divisors of m/b, noting that if
m/b is even, then r (and hence also rj) is odd, which gives t ≡ (rj)2 ≡ 1 mod 4.
Hence by Lemma 4.2 we have gcd(td, p

e) = gcd(d, pe) for every such prime-power
pe, which implies that gcd(td,m/b) = gcd(d,m/b). Thus a has order 2m.

Finally, we note that the groupH(m, r) is generated by x and y and hence also by
a = xyj and y, so every element of the intersection 〈a〉 ∩ 〈y〉 is central in H(m, r).
On the other hand, no non-trivial element of Y = 〈y〉 centralises 〈x, v〉 ∼= Dm,
so the intersection 〈a〉 ∩ 〈y〉 must be trivial. Thus A = 〈a〉 is complementary to
Y = 〈y〉. �

Putting together Theorems 3.2, 3.5 and 5.1, we have the following:

Corollary 5.2. For odd n, every regular Cayley map for Cn is isomorphic to the
map M(n, r) for some root r of −1 in Zn. For even n = 2m, every regular Cayley
map for Cn is isomorphic to the map M(n, r) for some unit r in Zm with the
properties that if b is the largest divisor of m coprime to r − 1, then either b = 1,
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or r is a root of −1 mod b of multiplicative order 2k where k is coprime to m/b.
Furthermore, in all cases, r is unique.

Observe that the pair (2m, 1) is admissible for all m, with b = 1. In this case
y centralises v and conjugates x to xv, so s = m. Moreover, we can take j = 1
in Theorem 5.1, and find that xy has order 2m, so the map M(2m, 1) has type
{2m,m}. As we will see later, these maps are anti-balanced. Similarly, the pair
(2m,−1) is admissible for all m, with b being the odd part of m, and k = 1; in this
case y has order 2, and again xy has order 2m, so the map M(2m,−1) has type
{2m, 2}. These are 2-valent balanced maps on the sphere.

In some sense the two special cases above are extremes, with b = 1 in the former
case and b as large as possible in the latter. We now determine the types of all of
the regular Cayley maps M(n, r) defined in Section 3.

Theorem 5.3. For odd n, the valence s of the map M(n, r) is the multiplicative
order of r as a unit mod m, and s = 2k for some integer k. Furthermore, if k
is even, then M(n, r) has type {2k, 2k}, while if k is odd, then M(n, r) has type
{lcm(k, n/c), 2k} where c is the largest divisor of n that is coprime to r + 1. In
particular, if k is odd and r + 1 is coprime to n, then the type of the map M(n, r)
is {k, 2k}.
Proof. Admissibility requires r to be a root of −1 mod n, so its order s (as a unit
mod n) is even, say s = 2k. The co-valence is the order of xy = vyky = vyk+1 in

the group G(n, r). Note that yk+1 conjugates v to vr
k+1

= v−r, since rk ≡ −1 mod
n. Hence if d denotes the order of yk+1, then by Lemma 4.1(b), the order of vyk+1

is d times the additive order of (−r)d in Zn.
When k is even, k+1 is odd and hence coprime to 2k, so yk+1 has order 2k = s.

Also ((−r)− 1)(−r)s ≡ (−r)s − 1 ≡ rs − 1 ≡ 1 − 1 ≡ 0 mod n, but similarly, we
have ((−r) − 1)(−r)k ≡ (−r)k − 1 ≡ rk − 1 ≡ −1 − 1 ≡ −2 mod n, which shows
that (−r)− 1 is coprime to n, and it follows that (−r)s ≡ 0 mod n. Hence in this
case, the order of vyk+1 is 2k = s.

When k is odd, k+ 1 is even and hence coprime to k but not to 2k, so yk+1 has
order k = s/2. In this case, let c be the largest divisor of n coprime to r+1. Then
since ((−r)−1)(−r)k ≡ (−r)k−1 ≡ −rk−1 ≡ 1−1 ≡ 0 mod n, the additive order of
(−r)k in Zn is (n/c)/gcd(k, n/c), by Lemma 4.3(a), which applies here with m = n
because n is odd. Hence in this case, the order of vyk+1 is k(n/c)/gcd(k, n/c),
which is lcm(k, n/c). The rest follows easily. �

For the even order case, we first compute the valence, and then the co-valence.

Theorem 5.4. For the admissible map H(m, r), let b and k be as in Theorem 5.1,
and let q be the multiplicative order of r as a unit mod m.

(a) Suppose the pair (m, r) is nice. Then the valence s is lcm(q,m/b). In
particular, if b = 1, then s = m, while if b > 1, then s = 2km/b if m is
odd, and s = km/b if m is even.

(b) Suppose the pair (m, r) is not nice. Then s = k(m/b)/2f−1, where 2f is
the largest power of 2 dividing m for which r ≡ −1 mod 2f .

In particular, s is divisible by 2k except when m is odd and b = 1 (in which case
s = m). Moreover, in all cases, s divides (r − 1)q, and s/k divides 2m/b.

Proof. The valence s is the order of the automorphism of 〈x, v〉 ∼= Dm given by
conjugation by y. This is a multiple of q (the order of r as a unit mod m), and
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hence also a multiple of k (because k divides the order of r as a unit mod b).
Next, since conjugation by yq centralises v and takes x to xvrq , we find that s is q
times the additive order of rq in Zm. The latter divides r − 1, since 0 ≡ rq − 1 ≡
(r − 1)rq mod m, and therefore s divides (r − 1)q.

Now suppose that (m, r) is nice. Then by Lemma 4.3(a), the additive order of rq
in Zm is (m/b)/gcd(q,m/b), and therefore s = q(m/b)/gcd(q,m/b) = lcm(q,m/b).

If b = 1, then for any maximal prime-power divisor pe of m, by the definition of
b we must have r ≡ 1 mod p, so the order of r as a unit mod pe divides pe. Hence
q divides m, or equivalently, gcd(q,m) = q. It follows that in this case, we have
s = q(m/b)/gcd(q,m/b) = qm/gcd(q,m) = m.

If b > 1, then the order of r as a unit mod b is 2k, while on the other hand, the
order of r as a unit mod m/b divides m/b, by the same argument as in the previous
paragraph. Hence 2k divides q, and q divides gcd(2k,m/b), which is 2km/b if m is
odd, or km/b ifm is even. Also ifm is odd, thenm/b is odd, and hence is coprime to
2k, but m/b divisible by q/(2k), so gcd(q,m/b) = gcd(q/(2k),m/b) = q/(2k), and
we find that s = q(m/b)/gcd(q,m/b) = 2k(m/b). Similarly, if m is even, then m/b
is coprime to k and divisible by q/k, and therefore gcd(q,m/b) = gcd(q/k,m/b) =
q/k, which gives s = q(m/b)/gcd(q,m/b) = k(m/b).

Next, suppose that (m, r) is not nice, so that m ≡ 0 mod 4 and r ≡ 3 mod 4.
Then in particular, q is even. Also let 2e and m′ be the 2-power part and odd part
of m, and let f be the largest integer such that 2 ≤ f ≤ e and r ≡ −1 mod 2f .

If f = e, then r ≡ −1 mod 2e, so rq ≡ 1+(−1)+ · · ·+1+(−1) ≡ 0 mod 2e, and
therefore the additive order of rq in Zm is equal to the additive order of rq in Zm′ .
In this case r has order 2 as a unit mod 2e, so the order of r as a unit mod m′ is still
q, which is divisible by 2k but now divides gcd(2k, 2m′/b) = 2km′/b, so we have
gcd(q,m′/b) = gcd(q/(2k),m′/b) = q/(2k). Hence the additive order of rq in Zm′

is (m′/b)/gcd(q,m′/b) = 2k(m′/b)/q, which gives s = 2k(m′/b) = k(m/b)/2e−1.
If f < e, then r ≡ −1 + c2f mod 2e, where c is odd. Now the order of r as a

unit mod b is 2k, where k is odd (since k is coprime to m/b, which is even). On
the other hand, r2 = 1 − 2c2f + c222f = 1 + c′2f+1 where c′ = −c + c22f−1 is
odd, so the order of r2 as a unit mod 2e is 2e−f−1, and hence the order of r as
a unit mod 2e is 2e−f . Also the order of r as a unit mod m′/b divides m′/b, by
the same argument as given previously. It follows that the 2-power part of q is
2e−f . Next, Lemma 4.2(c) tells us that rq ≡ (r + 1)q/2 ≡ cq2f−1 mod 2e, and
since the 2-power part of cq2f−1 is 2e−f2f−1 = 2e−1, we find that the additive
order of rq in Z2e is 2. Also gcd(q,m′/b) = gcd(q/(2e−fk),m′/b) = q/(2e−fk),
so the additive order of rq in Zm′ is (m′/b)/gcd(q,m′/b) = 2e−fk(m′/b)/q, which
is odd. Hence the additive order of rq in Zm is 2e−f+1k(m′/b)/q, and we have
s = 2e−f+1k(m′/b) = k(m/b)/(2f−1).

Finally, it is easy to check the above to verify that s is divisible by 2k except
when m is odd and b = 1, and that s/k divides 2m/b in all cases. �

Theorem 5.5. Let s be the valence of the regular Cayley map M(2m, r). If s is
odd, then s = m and the co-valence of the map is 2m, while if s is even, then the
co-valence is 2 lcm(s/2,m/c), where c is the largest divisor of m coprime to r2 − 1.

Proof. In all cases, the co-valence of M(2m, r) is the order of xy in the group
H(m, r).
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First suppose that s is odd. Then b = 1 (since otherwise s is divisible by 2k),
and we can take j = 1 in Theorem 5.1, and find that xy has order 2m. Also (m, r)
is nice, for otherwise Theorem 5.4(b) gives s = m/2f−1 where 2f divides m, but
that would make s even. Hence s = m, by Theorem 5.4(a), and so the type of the
map M(2m, r) is {2m,m} in this case.

Suppose instead that s is even. Since (xy)2 = vy2 and (vy2)i = v(r
2)iy2i, which

is trivial only if 2i is a multiple of s, we see that the order of xy is divisible by s,

and indeed since (xy)s = (vy2)s/2 = v(r
2)s/2 , the order of xy is s times the additive

order of (r2)s/2 in Zm. Now let c be the largest divisor of m coprime to r2 − 1.

Then since (r2 − 1)(r2)s/2 ≡ (r2)s/2 − 1 ≡ rs − 1 ≡ 0 mod m but r2 − 1 is coprime

to c, we have (r2)s/2 ≡ 0 mod c. On the other hand, the pair (m, r2) is nice (since if

m ≡ 0 mod 4, then r is odd and so r2 ≡ 1 mod 4), and hence by Lemma 4.3(a), the
additive order of (r2)s/2 in Zm/c is (m/c)/gcd(s/2,m/c). Since (r2)s/2 ≡ 0 mod c,

this is also the the additive order of (r2)s/2 in Zm, and therefore the order of xy
(and co-valence of M(2m, r)) is s(m/c)/gcd(s/2,m/c) = 2 lcm(s/2,m/c). �

6. Enumeration

In this section, we give a specific formula for the number of regular Cayley maps
for Cn in each of the two cases (n odd and n even).

For odd n, this is simply a formula for the number of roots of −1 in the group of
units modulo n. To obtain it, we need some notation. For any positive integer k,
let O2(k) and O2′(k) be the 2-power part and the odd part of k given by its prime
factorisation, so k = O2(k)O2′(k). For example, O2(120) = 8 while O2′(120) = 15.

Theorem 6.1. For every odd n > 2, the number of non-isomorphic regular Cayley
maps for the cyclic group Cn is

O2′(φ(n))(t
ω(n) − 1)/(2ω(n) − 1),

where φ is Euler’s function, ω(n) is the number of distinct prime divisors of n, and
t is the minimum of the 2-powers O2(p−1) over all primes p dividing n.

Proof. First consider the case where n = pe for some odd prime p. Here the number
of units of n is φ(pe) = pe−1(p−1), and these are well known to form a cyclic group.
(In fact our Lemma 4.2(a) gives a unit of multiplicative order pe−1.) Now the units
of odd order mod pe are precisely those of the form ap + b where a ∈ Zpe−1 and b
is a unit of odd order in Zp, so the number of these is pe−1O2′(p−1). Hence the
number of units of odd order in Zpe is pe−1(p−1) − pe−1O2′(p−1), which can be
rewritten as (O2(p−1)− 1)pe−1O2′(p−1).

Next, more generally, consider n as a product of such prime-powers. If r is a
root of −1 mod n, then the 2-power parts of the orders of r modulo q must be the
same for all maximal prime-powers q = pe dividing n, and hence must all be at
most t (the minimum of the 2-power parts of p−1 for all p). Now suppose 2i ≤ t.
Then for all such q the number of roots of −1 mod q having order divisible by 2i

but not 2i+1 is

2ipe−1O2′(p−1)−2i−1pe−1O2′(p−1) = (2i−2i−1)pe−1O2′(p−1) = 2i−1pe−1O2′(p−1).
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By the Chinese Remainder Theorem, the number of roots of −1 mod n having order
divisible by 2i but not 2i+1 is the product of these (over all primes p dividing n).
The product of the odd parts pe−1O2′(p−1) is

∏
p|n

(pe−1O2′(p−1)) = O2′(
∏
p|n

(pe−1(p−1))) = O2′(
∏
p|n

φ(pe)) = O2′(φ(n)),

while the product of the 2-power parts 2i−1 is

∏
p|n

2i−1 = 2
∑

p|n(i−1) = 2(i−1)ω(n).

Hence the total number of roots of −1 mod n is
∑

1≤2i≤t

2(i−1)ω(n)O2′(φ(n)) = O2′(φ(n))
∑

1≤2i≤t

2(i−1)ω(n)

= O2′(φ(n))(t
ω(n) − 1)/(2ω(n) − 1),

as required. �

Thus, for example, the number of regular Cayley maps for C11, C27, C49 and C65

are O2′(11) = 5, (O2(2)−1)·9 = 9, 7·O2′(6) = 21 and O2′(48)·(42−1)/(22−1) =
15, respectively. We have confirmed that the given formula is correct for many such
small cases, using Magma [1].

Corollary 6.2. If n is a Fermat prime p = 2e + 1, then the number of non-
isomorphic regular Cayley maps for the cyclic group Cn is φ(n) − 1 = n − 2. On
the other hand, if n is a product of distinct Fermat primes one of which is 3, then
there is just one regular Cayley map for Cn (of valency 2 and genus 0). In all other
cases for odd n, the number of such maps is strictly between 1 and φ(n)− 1.

Obtaining a specific formula for the number of regular Cayley maps for cyclic
groups of even order is a little more challenging. To do this, we use the following:

Lemma 6.3. If the pair (2m, r) is admissible, then so is (2m′, r′) for any positive
integer m′ with exactly the same prime divisors as m, and any r′ ∈ Zm′ with the
property that r′ ≡ r mod p for every prime p dividing m.

Proof. Let b′ be the largest divisor of m′ coprime to r′− 1. Then b′ has exactly the
same prime divisors as b, and m′/b′ has exactly the same prime divisors as m/b,
by the given property of r′. If b′ = 1, then admissibility is trivial, so suppose that
b′ > 1, in which case b > 1 as well.

Now let d be the smallest positive integer such that rd ≡ −1 mod p for every
prime p dividing b. Then d divides k, and (r′)d ≡ −1 mod p for all such p, and in
fact d is the smallest positive integer for which this happens, by the hypothesis on
r′. Hence by Lemma 4.2, the order of r′ as a unit mod b′ is 2d� for some � dividing b′.
In particular, (r′)d� has order 2 as a unit mod b′, and (r′)d� ≡ (−1)� ≡ −1 mod p
for all primes p dividing b′, and it follows that (r′)d� ≡ −1 mod b′. Therefore r′

is a root of −1 mod b′. Also the smallest positive integer k′ for which (r′)k
′ ≡ −1

mod b′ must divide d�, which in turn divides kb′, and is therefore coprime to m/b,
and hence also to m′/b′. Thus the pair (2m′, r′) is admissible. �
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The above lemma allows a reduction which gives us our enumeration formula for
the case n = 2m :

Theorem 6.4. For all m > 1, let q be the product of the odd prime divisors of m.
Then the number of non-isomorphic regular Cayley maps for the cyclic group C2m

is equal to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m

2q

∑
b | q

∏
p | b

δ(p−1, 2q/b) if m is even,

m

q

∑
b | q

(1 + 2ω(b) + · · ·+ 2ω(b)(t(b)−1))
∏
p | b

δ(p−1, 2q/b) if m is odd,

where the product is over all primes p dividing b in each case, ω(b) is the total
number of prime divisors of b, and δ(p−1, 2q/b) is the largest (odd ) divisor of p− 1
coprime to 2q/b, while 2t(b) is the greatest common divisor of the 2-power parts of
p− 1 for all primes p dividing b.

Proof. By Theorem 3.5, the number of regular Cayley maps for C2m is equal to
the number of units r in Zm for which the pair (m, r) is admissible. Any such r
determines a unique odd divisor b of m with the properties given in Theorem 5.1.

Now let m′ be the largest square-free divisor of m, namely the product of all
prime divisors of m. Then by Lemma 6.3, the number of units r mod m for which
(m, r) is admissible is equal to m/m′ times the number of units r′ mod m′ for which
(m′, r′) is admissible. Thus we can reduce to the case where m is square-free.

In that case, write m = 2q when m is even, or m = q when m is odd. Then we
find the total number of regular Cayley maps by counting for each divisor b of q
the number of r ∈ Zm for which r is a kth root of −1 mod b for some k coprime to
q/b, while r ≡ 1 mod p for every prime p dividing q/b. If b = 1, then there is just
one possibility, namely r = 1, and also this case contributes 1 to the summation
given in the statement of the theorem, as required. If b > 1, we proceed as follows.

If m is even, then m/b is even, and k must be odd and coprime to m/b = 2q/b.
In particular, for every prime divisor p of b, the order of r as a unit mod p must
be twice a divisor of δ(p−1, 2q/b). Conversely, if the order of r as a unit mod p is
twice a divisor of δ(p−1, 2q/b) for all such p, then −1 is a kth root of −1 mod b
for some odd k (equal to the least common multiple of those divisors). Since the
group of units of each Zp is cyclic (of even order p − 1), it now follows from the
Chinese Remainder Theorem that the number of possibilities for r is the product
of the terms δ(p−1, 2q/b) for all primes p dividing b.

If m is odd, then k can be even, but is coprime to m/b = q/b. Let 2t(b) be the
greatest common divisor of the 2-power parts of p− 1 for all the primes p dividing
b. Then the 2-power part of k must be 2i for some i in the range 0 ≤ i < t(b),
and the order of r as a unit mod p must be an odd multiple of 2i+1. For any such
i and p, the number of such units mod p is 2i δ(p−1, 2q/b), and hence (again by
the Chinese Remainder Theorem) the number of possibilities for r is the product of
these, which is 2ω(b)i times the product of the terms δ(p−1, 2q/b) over the primes
p dividingb. �
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Corollary 6.5. For m > 2, the total number of non-isomorphic regular Cayley
maps for the cyclic group C2m is equal to φ(m) whenever m is

(a) a power of 2, or
(b) a power of an odd Fermat prime p = 2e + 1, or
(c) a positive integer of the form 2e3f where e > 0 and f > 0.

On the other hand, the number of such maps is 2 when m is 3 or 4 or twice an odd
Fermat prime. In all other cases, the number is strictly between 2 and φ(m).

Proof. In case (a), if m = 2e then Theorem 6.4 gives the number of maps as
m
2 = φ(m). (Indeed, more directly: for any unit r mod m we can take b = 1 and
find that the pair (m, r) is admissible, and so gives a regular Cayley map.) In case
(b), if m = pf where p = 2e + 1 > 2, the number of maps is m

p (1 + (2e − 1)) =

pf−12e = pf−1(p− 1) = φ(m). Similarly, in case (c), where m = 2e3f , the number
of maps is m

6 (1 + 1) = m
3 = φ(m).

In particular, the number of maps is 2 when m = 3 or 4. Also if m = 2p where
p is an odd Fermat prime, then the number of maps is m

2p (1 + 1) = m
p = 2.

For all other values of m, it is easy to show that there exists at least one unit
r �≡ ±1 mod m such that the pair (m, r) is admissible, and at least one unit r mod
m for which (m, r) is not admissible.

For example, suppose m is divisible by some non-Fermat odd prime, say p. Then
φ(m) is divisible by some odd prime � < p. Take any r ∈ Zm with the property that
r has order � when considered as a unit mod pe, the highest power of p dividing
m, and r ≡ 1 mod q for every other maximal prime-power q dividing m. Then r
has (odd) order � > 1 as a unit mod m, so the pair (m, r) is not admissible. On
the other hand, if m is a power of p, then we can choose r as a unit of order p− 1
in Zm, or otherwise choose r (using the Chinese Remainder Theorem) such that
r ≡ −1 mod p but r ≡ 1 mod q for every other prime divisor q of m, and find that
(m, r) is admissible.

The remaining possibilities are left as an exercise for the reader. �

7. Representing maps in different ways

In this final section we investigate how a regular Cayley map M = Cay(A,X,ϕ)
for a cyclic group A can take different forms with respect to the given group A,
depending on the choice of the generating orbit X.

For odd n, we first characterise all elements of G(n, r) that generate a cyclic
group acting regular on vertices of M(n, r):

Theorem 7.1. In the group G(n, r), the element a = vyj generates a cyclic sub-
group complementary to Y = 〈y〉 if and only if s/gcd(s, j) divides n and rj ≡ 1
mod p for every prime p dividing n.

Proof. Let t = rj , and let d be the order of t as a unit mod n, which is s/gcd(s, j).
Now suppose that a = vyj has order n and 〈a〉 ∩ 〈y〉 = {1}. Then taking m = n

and u = v and w = yj , we find by Lemma 4.1(d) that every positive integer k for
which tk ≡ 0 mod n is a multiple of d, and hence by Lemma 4.3(b) that d divides
n and t ≡ 1 mod p for every prime p that divides n.

Conversely, suppose d divides n and rj ≡ 1 mod p for every prime p dividing n.
Then since n is odd, Lemma 4.2(a) gives td ≡ d mod pe for every prime-power pe

dividing n, and so td ≡ d mod n. This gives gcd(td, n) = gcd(d, n) = d, and hence
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by Lemma 4.1(c), we find that vyj has order n. Also G(n, r) is generated by v and
y and hence also by a = vyj and y, so every element of 〈a〉∩〈y〉 is central in G(n, r).
But no non-trivial element of 〈y〉 centralises 〈v〉, so the intersection 〈a〉 ∩ 〈y〉 must
be trivial. Thus A = 〈a〉 is complementary to Y = 〈y〉. �

This leads to the following:

Theorem 7.2. For odd n > 2, every regular Cayley map M(n, r) has a balanced
representation. On the other hand, in the group G(n, r), the subgroup 〈v〉 is the
only normal subgroup complementary to Y = 〈y〉. As a consequence, the cyclic
group Cn has a regular Cayley map with a non-balanced representation if and only
if n is not square-free.

Proof. For the first assertion, see Corollary 3.3 and earlier observations. For the
second, note that if A is any normal subgroup of G complementary to Y = 〈y〉,
then G/A ∼= Y ∼= Cs (where s is the order of y); in particular, G/A is abelian so
A contains the commutator subgroup 〈v〉, and then a comparison of orders gives
A = 〈v〉.

Now suppose n is square-free, and let M(n, r) be any regular Cayley map for Cn.
Also let j be any integer such that a = vyj generates a subgroup A complementary
to Y in G(n, r). Then by Theorem 7.1, rj ≡ 1 mod p for every prime p dividing n,
and since n is square-free, this implies that rj ≡ 1 mod n. Therefore yj is trivial,
so j ≡ 0 mod s, and a = v. Hence every representation of M(n, r) as a regular
Cayley map for Cn is balanced.

Conversely, suppose that n is not square-free. Then n is divisible by p2 for some
prime p. Let pe be the largest power of p dividing n, and let r be any positive
integer for which r ≡ pe−1 − 1 mod pe while r ≡ −1 mod n/pe. (Such an integer
exists by the Chinese Remainder Theorem.) Then r is a unit mod pe of order 2p
and also a unit mod n/pe of order 2, so r is a unit mod n, with rp ≡ −1 mod n.
Hence the pair (n, r) is admissible. In particular, s = 2p for this choice of r. Also
we can take j = 2 in Theorem 7.1, since gcd(s, 2) = 2 and s/2 = p which divides
n, and r2 ≡ 1 mod t for every prime t dividing n. Hence a = vy2 generates a cyclic
subgroup of G(n, r) that is complementary to Y , but is not normal in G(n, r). Thus
M(n, r) has a non-balanced representation. �

Note that the smallest non-balanced representations in the odd order case occur
for n = 9 ; these are obtainable by taking r = 2 and letting a = vy2 or a = vy4.

There are no anti-balanced regular Cayley maps for Cn when n is odd. In fact,
as noted earlier, there are no t-balanced regular Cayley maps for Cn for any t �= 1
(modulo the valence), since Cn has no subgroup of index 2.

For cyclic groups of even order, the situation is different — it can happen that
M(2m, r) has no balanced representation at all:

Theorem 7.3. For m > 2, the regular Cayley map M(2m, r) has a balanced rep-
resentation if and only if r is a root of −1 mod m. In all such cases, m = 2eb for
some e, with r ≡ −1 mod 2e, and s = 2k, which is the order of r as a unit mod m.

Proof. Suppose M(2m, r) has a balanced representation as a regular Cayley map
for C2m. Then G = H(m, r) contains a cyclic normal subgroup A complementary
to Y = 〈y〉. In particular, G/A ∼= Y which is cyclic, so A contains G′ = 〈v〉, and
therefore A is generated by some element a such that a2 = v. Moreover, conjugation
by y takes a to at, and since the balanced property requires ys/2 to invert every
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element of a generating set for A, we find that t is a root of −1 mod 2m, and hence
also a root of −1 mod m. But now yvy−1 = ya2y−1 = a2t = vt and so t ≡ r mod
m, and it follows that r is root of −1 mod m.

Conversely, suppose r is a root of −1 mod m (and the pair (m, r) is admissible).
Then r �≡ 1 mod p for any odd prime p dividing m, so b is the odd part of m, and
m = 2eb, say. But also if e > 0 (so that m is even), then r must be −1 itself mod 2e

(since the order of any unit mod 2e is a power of 2, and the square of any such
unit is 1 mod 4), and hence r has order 1 or 2 as a unit mod 2e. It follows that
the order of r as a unit mod m is equal to 2k, and therefore rk ≡ −1 mod m. We
could now use Theorem 5.4 to prove that s = 2k, but it is easy to do this directly:
first, y2k centralises v, because r2k ≡ 1 mod m, but also y2kxy−2k = xvr2k where
r2k = rk(1 + rk) ≡ rk(1 − 1) ≡ 0 mod m, and so y2k centralises x as well; thus y
has order 2k. Next, we can take a = xyk in Theorem 5.1 and find that M(2m, r) is
a regular Cayley map for 〈a〉. For this choice of a we have x−1ax = ykx = y−kx =
a−1, and yay−1 = yxyk−1 = xvyk = v−1xyk = v−1a, which lies in A = 〈a〉 because
a2 = vrk generates 〈v〉. Thus A is normal in 〈x, y〉 = 〈x, v, y〉 = G, and so the map
M(2m, r) is balanced with respect to A ∼= C2m. �

Note that in the special case where r = −1, we have k = 1 and valence s = 2,
giving us the balanced maps of genus 0 mentioned after Corollary 5.2.

On the other hand, it is easy to use Theorem 7.3 to construct regular Cayley
maps for cyclic groups of even order that have no balanced representation: for
example, just take r = 1 for any m > 2, or for any m divisible by two distinct
primes, take a maximal odd prime-power divisor b of m and choose r such that
r ≡ −1 mod b while r ≡ 1 mod m/b.

Similarly, when M(2m, r) does have a balanced representation, it can sometimes
also have a non-balanced representation. For suppose m is odd and has an odd
maximal prime-power divisor pe with e > 1. Take r such that r ≡ −1+pe−1 mod pe

while r ≡ −1 mod m/pe, in which case rp ≡ −1 mod m, and b = m (and k = p).
Then H(m, r) has a balanced representation using a = xyp. On the other hand,
taking a = xy also gives a cyclic group complementary to Y , by Theorem 5.1, since
r ≡ −1 for all p dividing b, but in this case a2 = vy2 �∈ 〈v〉, so this representation
of the map is not balanced.

Finally, we consider which maps M(2m, r) have t-balanced representations for
some t. Together with the balanced maps for cyclic groups of odd order, this gives
a complete classification of t-balanced regular Cayley maps for cyclic groups. A
similar classification has been achieved independently by Young Soo Kwon [21].

Theorem 7.4. The regular Cayley map M(2m, r) can be represented as a t-balanced
regular Cayley map for C2m for some t if and only if r2 ≡ 1 mod m/b. Moreover, if
r ≡ 1 mod m, then the map is anti-balanced (with t = −1), while if r ≡ −1 mod m,
then the map is balanced (with t = 1). In all other cases, the order of r as a unit
mod m is equal to 2k (where k = 1 if b = 1), and rk is a unit mod m, and then
t ≡ 1− 2k� mod s, where � is the multiplicative inverse of rk in Zm.

Proof. First we consider the special cases r ≡ ±1 mod m, which were described
briefly after Corollary 5.2.

When r ≡ 1 mod m we have s = m, since y centralises v and conjugates x to xv.
Also b = 1, and we can take a = xyj for any j coprime to m. Since r ≡ 1 mod m
we have rj ≡ j mod m, and so a2 = vrjy2j = vjy2j . Letting � be the multiplicative
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inverse of j mod m, we find that a2� = (vjy2j)� = vj�y2j� = vy2, and it follows
that ya = yxyj = xvyj+1 = xyjvy = avy = avy2y−1 = a2�+1y−1. Hence the map
is anti-balanced, for every choice of a. [In fact M(2m, r) is a regular Cayley map
for C2m of class (i) or (ii) as described in [7, §7], depending on whether m is odd
or even.]

On the other hand, when r ≡ −1 mod m we have s = 2, since y2 centralises v
and r2 ≡ 1 + (−1) ≡ 0 mod m. Because s = 2 we must take j = 1, giving a = xy,
and then a2 = vy2 = v. It follows that ya = yxy = y−1xy = a−1y, which means
we have a 1-balanced map (of type {2m, 2} on the sphere).

So from now on let us suppose that r �≡ ±1 mod m. Also let q be the multiplica-
tive order of r as a unit mod m.

Suppose that M(2m, r) can be represented as a t-balanced regular Cayley map
for A ∼= C2m by taking a = xyj as the generator for A.

Let K be the kernel of the skew morphism of A given by conjugation by y.
Then since we have a t-balanced map representation, K has index 1 or 2 in A, and
hence K = 〈a〉 or 〈a2〉. In either case, 〈a2〉 is normalised by y (by [7, Lemma 5.1]),
and hence is normal in 〈a, y〉 = G. The centraliser CG(K) of K contains a, so
the quotient G/CG(K) is cyclic, generated by the image of y, and so CG(K) also
contains G′ = 〈v〉. Thus a2 commutes with v. Then since a2 = vrjy2j , we find that
y2j commutes with v, and so 2j is a multiple of q.

Also by Theorem 5.1 we know that j is coprime to m/b, and hence q/2 is coprime
to m/b. On the other hand, since r − 1 is divisible by every prime divisor of m/b,
we know that the order of r as a unit mod m/b divides m/b (by Lemma 4.2), and
hence the order of r as a unit mod m/b divides gcd(q,m/b), which is at most 2.
Thus r2 ≡ 1 mod m/b.

Conversely, suppose that r2 ≡ 1 mod m/b. If b > 1, then since also r2k ≡
(−1)2 ≡ 1 mod b, we have r2k ≡ 1 mod m, and so y2k centralises v and q divides
2k. Moreover, since 2k is the order of r as a unit mod b, it follows that q = 2k.
Similarly, if b = 1, then r2 ≡ 1 mod m and so q = 2, and in this case we take k = 1
in what follows.

By Theorem 5.1 we can take a = xyk and obtain M(2m, r) as a regular Cayley
map for A = 〈a〉. In particular, by the observation we made in the second paragraph
of Theorem 5.1, we know that rk is a unit mod m.

Note that a2 = vrky2k = vrkyq. We claim that the subgroup generated by a2 is
normal in H(m, r). Since H(m, r) is generated by a and y, we need to show that
〈a2〉 is normalised by y, and then since

ya2y−1 = y(vrkyq)y−1 = vrkryq = vrk(r−1)vrkyq = vrk(r−1)a2,

it suffices to show that vrk(r−1) ∈ 〈a2〉. To do this, note that s is divisible by
q = 2k, and by Theorem 5.4 that s divides (r− 1)q. Now let w = as/k = (a2)s/q =
(vrkyq)s/q, which equals vrks/q because yq commutes with v and ys = 1. It now
follows that vrk(r−1) = w(r−1)q/s = a(r−1)q/k = a2(r−1), which lies in 〈a2〉.

Finally, let c = rk = rq/2. Then c2 ≡ rq ≡ 1 mod m, and since y2k centralises v,
we have y−kvyk = ykvy−k = vc, and so ya = yxyk = xvyk+1 = xykvcy = avcy. On
the other hand, since s divides (r − 1)q, we know that qr ≡ q mod s, and then an
easy induction gives qc ≡ qrk ≡ q mod s, and therefore yqc = yq. Hence if � is the
multiplicative inverse of rk in Zm, we have

(a2)�c = (vrkyq)�c = vrk�cyqc� = vcyq� = (vcy)yq�−1,
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and thus ya = avcy = a(a2)�c(yq�−1)−1 = a2�c+1y1−q�. This shows that the map
is t-balanced, where t ≡ 1− q� ≡ 1− 2k� mod s. �

Note that for balanced representations (where t = 1), the last condition implies
that 2k� ≡ 0 mod s, and hence that y2k� is trivial. But the order of y2k = yq is
s/q, which divides m (by Theorem 5.4), and � is a unit mod m, so this implies that
y2k is trivial, and therefore s = q = 2k. Also for a balanced representation we need
conjugation of A = 〈a〉 by ys/2 to be the inversion automorphism, so we find that
rk ≡ −1 mod m, which is precisely the requirement of Theorem 7.3.

Similarly we have the following, which also follows from the fact that a regular
Cayley map for a cyclic group is reflexible if and only if it is anti-balanced (see [8]):

Corollary 7.5. For m > 1, the regular Cayley map M(2m, r) has a representation
as an anti-balanced regular Cayley map for C2m if and only if r2 ≡ 1 mod m.

Proof. If such a representation occurs, then 1 − 2k� ≡ −1 mod s, so k� ≡ −1
mod s/2, and in particular, k is a unit mod s/2. On the other hand, q = 2k divides
s, so this forces k = 1 and q = 2, and so r2 ≡ 1 mod m. Conversely, if r2 ≡ 1 mod
m, then k = 1 and rk = 1, so � = 1 and 1− 2k� ≡ 1− 2 ≡ −1 mod s. �

Some small examples of regular Cayley maps for cyclic groups of even order that
have a t-balanced representation for some t �= ±1 are as follows:

• M(30, 7) is 5-balanced, of type {12, 12},
• M(56, 5) is 7-balanced, of type {24, 12},
• M(90, 28) is 17-balanced, of type {36, 36},
• M(110, 12) is 21-balanced, of type {44, 44},
• M(112, 5) is 7-balanced, of type {48, 24},
• M(210, 43) is 41-balanced, of type {84, 84},
• M(264, 85) is 11-balanced, of type {120, 60},
• M(280, 61) is 19-balanced, of type {120, 60}.

Some small examples of regular Cayley maps for cyclic groups of even order that
have no t-balanced representation for any t are as follows, with the ‘power function
values’ indicating the values of the power function of any skew morphism associated
with a regular Cayley map representation:

• M(18, 4), of type {18, 9}, with power function values {2, 5, 8},
• M(32, 3), of type {32, 8}, with power function values {3, 7},
• M(32, 5), of type {32, 16}, with power function values {7, 15},
• M(36, 7), of type {36, 18}, with power function values {5, 11, 17},
• M(50, 6), of type {50, 25}, with power function values {4, 9, 14, 19, 24},
• M(54, 10), of type {54, 27}, with power function values {8, 17, 26},
• M(64, 3), of type {64, 32}, with power function values {3, 7} or {11, 15}.

8. Summary

To complete this paper, and to make reference easier for the reader, we bring
together most of the main facts about our two families of regular Cayley maps for
cyclic groups.
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Every regular Cayley map for Cn is isomorphic to exactly one of the mapsM(n, r)
we have defined here. For odd n, the regular Cayley map M(n, r):

• is defined for every unit r mod n that is a root of −1 in Zn,
• has automorphism group G(n, r) = 〈 v, y | vn = ys = 1, yvy−1 = vr 〉,
where s is the order of r as a unit mod n,

• has valence s (which is even), and co-valence s if s/2 is even, or lcm(s/2, n/c)
where c is the largest divisor of n coprime to r + 1, if s/2 is odd,

• is reflexible if and only if r ≡ −1 mod n (and s = 2),
• is a regular Cayley map for A = 〈vyj〉 if and only if s/gcd(s, j) divides n
and rj ≡ 1 mod p for every prime p dividing n,

• always has a balanced representation,
• has a non-balanced representation if and only if n is divisible by the square
of some prime,

• has no anti-balanced representation, and indeed has no t-balanced repre-
sentation for any t �= 1.

For even n = 2m, the regular Cayley map M(2m, r):

• is defined for every unit r mod m such that if b is the largest divisor of m
that is coprime to r−1, then either b = 1, or r is a root of −1 mod b of
multiplicative order 2k where k is coprime to m/b,

• has automorphism groupH(m, r) = 〈 x, v, y |x2 = vm = ys = 1, xvx =
v−1, yvy−1 = vr, yxy−1 = xv 〉, where s is the order of the automorphism
of 〈x, v〉 ∼= Dm taking (x, v) to (xv, vr),

• has valence s, which is lcm(q,m/b) where q is the order of r as a unit mod
m, if m �≡ 0 mod 4 or r ≡ 1 mod 4, or k(m/b)/2f−1 where 2f is the largest
2-power dividing m such that r ≡ −1 mod 2f , if m ≡ 0 mod 4 and r ≡ 3
mod 4,

• has co-valence 2m if s is odd (in which case s = m), or 2 lcm(s/2,m/c)
where c is the largest divisor of m coprime to r2 − 1, if s is even,

• is reflexible if and only if r2 ≡ 1 mod m,
• is a regular Cayley map for A = 〈xviyj〉 if and only if j is coprime to m/b
and rj ≡ −1 mod p for every prime divisor p of b (with no restriction on i),

• has a balanced representation if and only if r is a root of −1 mod m,
• has a t-balanced representation for some t if and only if r2 ≡ 1 mod m/b,
• has an anti-balanced representation if and only if r2 ≡ 1 mod m.

Formulae for the numbers of such maps for Cn for given n were provided in Section 6.
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