Continued fractions for complex numbers and values of binary quadratic forms
HTML articles powered by AMS MathViewer
- by S. G. Dani and Arnaldo Nogueira PDF
- Trans. Amer. Math. Soc. 366 (2014), 3553-3583 Request permission
Abstract:
We describe various properties of continued fraction expansions of complex numbers in terms of Gaussian integers. Such numerous distinct expansions are possible for a complex number. They can be arrived at through various algorithms, as also in a more general way than what we call “iteration sequences”. We consider in this broader context the analogues of the Lagrange theorem characterizing quadratic surds, the growth properties of the denominators of the convergents, and the overall relation between sequences satisfying certain conditions, in terms of non-occurrence of certain finite blocks, and the sequences involved in continued fraction expansions. The results are also applied to describe a class of binary quadratic forms with complex coefficients whose values over the set of pairs of Gaussian integers form a dense set of complex numbers.References
- E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z. 19 (1924), no. 1, 153–206 (German). MR 1544651, DOI 10.1007/BF01181074
- Alan F. Beardon and Ian Short, The Seidel, Stern, Stolz and Van Vleck theorems on continued fractions, Bull. Lond. Math. Soc. 42 (2010), no. 3, 457–466. MR 2651941, DOI 10.1112/blms/bdq006
- M. Bachir Bekka and Matthias Mayer, Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Mathematical Society Lecture Note Series, vol. 269, Cambridge University Press, Cambridge, 2000. MR 1781937, DOI 10.1017/CBO9780511758898
- Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). MR 0244260
- Armand Borel and Gopal Prasad, Values of isotropic quadratic forms at $S$-integral points, Compositio Math. 83 (1992), no. 3, 347–372. MR 1175945
- Alexander N. Starkov, Dynamical systems on homogeneous spaces, Translations of Mathematical Monographs, vol. 190, American Mathematical Society, Providence, RI, 2000. Translated from the 1999 Russian original by the author. MR 1746847, DOI 10.1090/mmono/190
- S. G. Dani and Arnaldo Nogueira, On orbits of $\textrm {SL}(2,{\Bbb Z})_+$ and values of binary quadratic forms on positive integral pairs, J. Number Theory 95 (2002), no. 2, 313–328. MR 1924105
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
- Doug Hensley, Continued fractions, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. MR 2351741, DOI 10.1142/9789812774682
- A. Hurwitz, Über die Entwicklung complexer Grössen in Kettenbrüche, Acta Math. 11 (1887), no. 1-4, 187–200 (German). MR 1554754, DOI 10.1007/BF02418048
- W. J. LeVeque, Continued fractions and approximations in $k(i)$. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14 (1952), 526–535, 536–545. MR 0053972
- G. A. Margulis, Oppenheim conjecture, Fields Medallists’ lectures, World Sci. Ser. 20th Century Math., vol. 5, World Sci. Publ., River Edge, NJ, 1997, pp. 272–327. MR 1622909, DOI 10.1142/9789812385215_{0}035
- Asmus L. Schmidt, Diophantine approximation of complex numbers, Acta Math. 134 (1975), 1–85. MR 422168, DOI 10.1007/BF02392098
Additional Information
- S. G. Dani
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
- Address at time of publication: Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
- MR Author ID: 54445
- Email: dani@math.tifr.res.in
- Arnaldo Nogueira
- Affiliation: Aix-Marseille Université, Institut de Mathématiques de Luminy, 163, avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: arnaldo.nogueira@univ-amu.fr
- Received by editor(s): March 4, 2011
- Received by editor(s) in revised form: August 8, 2012
- Published electronically: March 4, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 3553-3583
- MSC (2010): Primary 11A55, 11H55; Secondary 22Fxx
- DOI: https://doi.org/10.1090/S0002-9947-2014-06003-0
- MathSciNet review: 3192607