Automorphisms of corona algebras, and group cohomology
HTML articles powered by AMS MathViewer
- by Samuel Coskey and Ilijas Farah PDF
- Trans. Amer. Math. Soc. 366 (2014), 3611-3630 Request permission
Abstract:
In 2007 Phillips and Weaver showed that, assuming the Continuum Hypothesis, there exists an outer automorphism of the Calkin algebra. (The Calkin algebra is the algebra of bounded operators on a separable complex Hilbert space, modulo the compact operators.) In this paper we establish that the analogous conclusion holds for a broad family of quotient algebras. Specifically, we will show that assuming the Continuum Hypothesis, if $A$ is a separable algebra which is either simple or stable, then the corona of $A$ has nontrivial automorphisms. We also discuss a connection with cohomology theory, namely, that our proof can be viewed as a computation of the cardinality of a particular derived inverse limit.References
- Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315–427. MR 2436146, DOI 10.1017/CBO9780511735219.011
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR 2188261, DOI 10.1007/3-540-28517-2
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Unitary equivalence modulo the compact operators and extensions of $C^{\ast }$-algebras, Proceedings of a Conference on Operator Theory (Dalhousie Univ., Halifax, N.S., 1973) Lecture Notes in Math., Vol. 345, Springer, Berlin, 1973, pp. 58–128. MR 0380478
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no. 2, 265–324. MR 458196, DOI 10.2307/1970999
- Kenneth R. Davidson, $C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012, DOI 10.1090/fim/006
- George A. Elliott, Derivations of matroid $C^{\ast }$-algebras. II, Ann. of Math. (2) 100 (1974), 407–422. MR 352999, DOI 10.2307/1971079
- Ilijas Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the integers, Mem. Amer. Math. Soc. 148 (2000), no. 702, xvi+177. MR 1711328, DOI 10.1090/memo/0702
- Ilijas Farah, How many Boolean algebras $\mathcal P(\mathbb N)/\mathcal I$ are there?, Illinois Journal of Mathematics 46 (2003), 999–1033.
- Ilijas Farah, Rigidity conjectures, Logic Colloquium 2000, Lect. Notes Log., vol. 19, Assoc. Symbol. Logic, Urbana, IL, 2005, pp. 252–271.
- Ilijas Farah, All automorphisms of all Calkin algebras, Math. Res. Lett. 18 (2011), no. 3, 489–503. MR 2802582, DOI 10.4310/MRL.2011.v18.n3.a9
- Ilijas Farah, All automorphisms of the Calkin algebra are inner, Ann. of Math. (2) 173 (2011), no. 2, 619–661. MR 2776359, DOI 10.4007/annals.2011.173.2.1
- Ilijas Farah and Bradd Hart, Countable saturation of corona algebras, C. R. Math. Acad. Sci. Soc. R. Can. 35 (2013), no. 2, 35–56 (English, with English and French summaries). MR 3114457
- Ilijas Farah, Paul McKenney, and Ernest Schimmerling, Some Calkin algebras have outer automorphisms, Arch. Math. Logic 52 (2013), no. 5-6, 517–524. MR 3072776, DOI 10.1007/s00153-013-0329-8
- I. Farah and S. Shelah, Trivial automorphisms, preprint, arXiv:1112.3571, 2011.
- Klaas Pieter Hart, The Čech-Stone compactification of the real line, Recent progress in general topology (Prague, 1991) North-Holland, Amsterdam, 1992, pp. 317–352. MR 1229130, DOI 10.1016/0887-2333(92)90021-I
- C. U. Jensen, Les foncteurs dérivés de $\underleftarrow {\mmlToken {mi}{lim}}$ et leurs applications en théorie des modules, Lecture Notes in Mathematics, Vol. 254, Springer-Verlag, Berlin-New York, 1972. MR 0407091
- Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994. Large cardinals in set theory from their beginnings. MR 1321144
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Paul McKenney, Reduced products of UHF algebras, preprint, arXiv:1303.5037, 2013.
- Gert K. Pedersen, The corona construction, Operator Theory: Proceedings of the 1988 GPOTS-Wabash Conference (Indianapolis, IN, 1988) Pitman Res. Notes Math. Ser., vol. 225, Longman Sci. Tech., Harlow, 1990, pp. 49–92. MR 1075635
- N. Christopher Phillips and Nik Weaver, The Calkin algebra has outer automorphisms, Duke Math. J. 139 (2007), no. 1, 185–202. MR 2322680, DOI 10.1215/S0012-7094-07-13915-2
- Walter Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23 (1956), 409–419. MR 80902
- Saharon Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982. MR 675955
- Daniel E. Talayco, Applications of cohomology to set theory. I. Hausdorff gaps, Ann. Pure Appl. Logic 71 (1995), no. 1, 69–106. MR 1312430, DOI 10.1016/0168-0072(94)00020-4
Additional Information
- Samuel Coskey
- Affiliation: The Fields Institute, 222 College Street, Toronto, Ontario, Canada M5T 3J1 — and — Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3
- Address at time of publication: Department of Mathematics, Boise State University, 1910 University Drive, Boise, Idaho 83725
- Email: scoskey@nylogic.org
- Ilijas Farah
- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3 — and — Matematicki Institut, Kneza Mihaila 34, Belgrade, Serbia
- MR Author ID: 350129
- Email: ifarah@yorku.ca
- Received by editor(s): August 13, 2012
- Published electronically: March 19, 2014
- Additional Notes: The second author was partially supported by NSERC
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 3611-3630
- MSC (2010): Primary 46L40; Secondary 46L05, 03E50
- DOI: https://doi.org/10.1090/S0002-9947-2014-06146-1
- MathSciNet review: 3192609