## Compact Kähler manifolds with automorphism groups of maximal rank

HTML articles powered by AMS MathViewer

- by De-Qi Zhang PDF
- Trans. Amer. Math. Soc.
**366**(2014), 3675-3692 Request permission

## Abstract:

For an automorphism group $G$ on an $n$-dimensional ($n \ge 3$) normal projective variety or a compact Kähler manifold $X$ so that $G$ modulo its subgroup $N(G)$ of null entropy elements is an abelian group of maximal rank $n-1$, we show that $N(G)$ is virtually contained in $\mathrm {Aut}_0(X)$, the $X$ is a quotient of a complex torus $T$ and $G$ is mostly descended from the symmetries on the torus $T$, provided that both $X$ and the pair $(X, G)$ are minimal.## References

- Arnaud Beauville,
*Some remarks on Kähler manifolds with $c_{1}=0$*, Classification of algebraic and analytic manifolds (Katata, 1982) Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1–26. MR**728605** - Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan,
*Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc.**23**(2010), no. 2, 405–468. MR**2601039**, DOI 10.1090/S0894-0347-09-00649-3 - Garrett Birkhoff,
*Linear transformations with invariant cones*, Amer. Math. Monthly**74**(1967), 274–276. MR**214605**, DOI 10.2307/2316020 - Frederic Campana, Fei Wang, and De-Qi Zhang,
*Automorphism groups of positive entropy on projective threefolds*, Trans. Amer. Math. Soc.**366**(2014), no. 3, 1621–1638. MR**3145744**, DOI 10.1090/S0002-9947-2013-05838-2 - S. Cantat and A. Zeghib, Holomorphic actions of higher rank lattices in dimension three, Preprint 2009.
- Tien-Cuong Dinh and Nessim Sibony,
*Groupes commutatifs d’automorphismes d’une variété kählérienne compacte*, Duke Math. J.**123**(2004), no. 2, 311–328 (French, with English and French summaries). MR**2066940**, DOI 10.1215/S0012-7094-04-12323-1 - Akira Fujiki,
*On automorphism groups of compact Kähler manifolds*, Invent. Math.**44**(1978), no. 3, 225–258. MR**481142**, DOI 10.1007/BF01403162 - Yujiro Kawamata,
*Minimal models and the Kodaira dimension of algebraic fiber spaces*, J. Reine Angew. Math.**363**(1985), 1–46. MR**814013**, DOI 10.1515/crll.1985.363.1 - JongHae Keum, Keiji Oguiso, and De-Qi Zhang,
*Conjecture of Tits type for complex varieties and theorem of Lie-Kolchin type for a cone*, Math. Res. Lett.**16**(2009), no. 1, 133–148. MR**2480567**, DOI 10.4310/MRL.2009.v16.n1.a13 - János Kollár and Shigefumi Mori,
*Birational geometry of algebraic varieties*, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR**1658959**, DOI 10.1017/CBO9780511662560 - David I. Lieberman,
*Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds*, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975–1977) Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140–186. MR**521918** - Noboru Nakayama and De-Qi Zhang,
*Building blocks of étale endomorphisms of complex projective manifolds*, Proc. Lond. Math. Soc. (3)**99**(2009), no. 3, 725–756. MR**2551469**, DOI 10.1112/plms/pdp015 - Noboru Nakayama and De-Qi Zhang,
*Polarized endomorphisms of complex normal varieties*, Math. Ann.**346**(2010), no. 4, 991–1018. MR**2587100**, DOI 10.1007/s00208-009-0420-y - Keiji Oguiso,
*Automorphisms of hyperkähler manifolds in the view of topological entropy*, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 173–185. MR**2296437**, DOI 10.1090/conm/422/08060 - Daniel Segal,
*Polycyclic groups*, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR**713786**, DOI 10.1017/CBO9780511565953 - N. I. Shepherd-Barron and P. M. H. Wilson,
*Singular threefolds with numerically trivial first and second Chern classes*, J. Algebraic Geom.**3**(1994), no. 2, 265–281. MR**1257323** - Joseph A. Wolf,
*Growth of finitely generated solvable groups and curvature of Riemannian manifolds*, J. Differential Geometry**2**(1968), 421–446. MR**248688** - De-Qi Zhang,
*Automorphism groups and anti-pluricanonical curves*, Math. Res. Lett.**15**(2008), no. 1, 163–183. MR**2367182**, DOI 10.4310/MRL.2008.v15.n1.a14 - De-Qi Zhang,
*A theorem of Tits type for compact Kähler manifolds*, Invent. Math.**176**(2009), no. 3, 449–459. MR**2501294**, DOI 10.1007/s00222-008-0166-2 - De-Qi Zhang,
*Dynamics of automorphisms on projective complex manifolds*, J. Differential Geom.**82**(2009), no. 3, 691–722. MR**2534992** - De-Qi Zhang,
*The $g$-periodic subvarieties for an automorphism $g$ of positive entropy on a compact Kähler manifold*, Adv. Math.**223**(2010), no. 2, 405–415. MR**2565534**, DOI 10.1016/j.aim.2009.08.010 - De-Qi Zhang,
*Automorphism groups of positive entropy on minimal projective varieties*, Adv. Math.**225**(2010), no. 5, 2332–2340. MR**2680167**, DOI 10.1016/j.aim.2010.04.022 - De-Qi Zhang,
*Algebraic varieties with automorphism groups of maximal rank*, Math. Ann.**355**(2013), no. 1, 131–146. MR**3004578**, DOI 10.1007/s00208-012-0783-3

## Additional Information

**De-Qi Zhang**- Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
- MR Author ID: 187025
- ORCID: 0000-0003-0139-645X
- Email: matzdq@nus.edu.sg
- Received by editor(s): August 23, 2012
- Published electronically: March 5, 2014
- Additional Notes: The author was supported by an ARF of NUS
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**366**(2014), 3675-3692 - MSC (2010): Primary 32H50, 37C85, 32M05, 14J50, 32Q15
- DOI: https://doi.org/10.1090/S0002-9947-2014-06227-2
- MathSciNet review: 3192612