## Structure of crossed products by strictly proper actions on continuous-trace algebras

HTML articles powered by AMS MathViewer

- by Siegfried Echterhoff and Dana P. Williams PDF
- Trans. Amer. Math. Soc.
**366**(2014), 3649-3673 Request permission

## Abstract:

We examine the ideal structure of crossed products $B\rtimes _{\beta }G$ where $B$ is a continuous-trace $C^*$-algebra and the induced action of $G$ on the spectrum of $B$ is proper. In particular, we are able to obtain a concrete description of the topology on the spectrum of the crossed product in the cases where either $G$ is discrete or $G$ is a Lie group acting smoothly on the spectrum of $B$.## References

- Armand Borel,
*Seminar on transformation groups*, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR**0116341** - Anton Deitmar and Siegfried Echterhoff,
*Principles of harmonic analysis*, Universitext, Springer, New York, 2009. MR**2457798** - Siegfried Echterhoff,
*On induced covariant systems*, Proc. Amer. Math. Soc.**108**(1990), no. 3, 703–706. MR**994776**, DOI 10.1090/S0002-9939-1990-0994776-6 - W. J. Trjitzinsky,
*General theory of singular integral equations with real kernels*, Trans. Amer. Math. Soc.**46**(1939), 202–279. MR**92**, DOI 10.1090/S0002-9947-1939-0000092-6 - Siegfried Echterhoff,
*The primitive ideal space of twisted covariant systems with continuously varying stabilizers*, Math. Ann.**292**(1992), no. 1, 59–84. MR**1141785**, DOI 10.1007/BF01444609 - Siegfried Echterhoff,
*Crossed products with continuous trace*, Mem. Amer. Math. Soc.**123**(1996), no. 586, viii+134. MR**1371090**, DOI 10.1090/memo/0586 - Siegfried Echterhoff,
*Crossed products, the Mackey-Rieffel-Green machine and applications*, preprint, 2011. (arXiv:math.OA.1006.4975v2). - Siegfried Echterhoff and Heath Emerson,
*Structure and $K$-theory of crossed products by proper actions*, Expo. Math.**29**(2011), no. 3, 300–344. MR**2820377**, DOI 10.1016/j.exmath.2011.05.001 - Siegfried Echterhoff and Jonathan Rosenberg,
*Fine structure of the Mackey machine for actions of abelian groups with constant Mackey obstuction*, Pacific J. Math.**170**(1995), 17–52. - Siegfried Echterhoff and Dana P. Williams,
*Crossed products whose primitive ideal spaces are generalized trivial $\hat G$-bundles*, Math. Ann.**302**(1995), no. 2, 269–294. MR**1336337**, DOI 10.1007/BF01444496 - T. Venkatarayudu,
*The $7$-$15$ problem*, Proc. Indian Acad. Sci., Sect. A.**9**(1939), 531. MR**0000001**, DOI 10.1090/gsm/058 - Philip Green,
*The local structure of twisted covariance algebras*, Acta Math.**140**(1978), no. 3-4, 191–250. MR**493349**, DOI 10.1007/BF02392308 - S. Losinsky,
*Sur le procédé d’interpolation de Fejér*, C. R. (Doklady) Acad. Sci. URSS (N.S.)**24**(1939), 318–321 (French). MR**0002001** - Steven Hurder, Dorte Olesen, Iain Raeburn, and Jonathan Rosenberg,
*The Connes spectrum for actions of abelian groups on continuous-trace algebras*, Ergodic Theory Dynam. Systems**6**(1986), no. 4, 541–560. MR**873431**, DOI 10.1017/S0143385700003680 - Eberhard Kirchberg and Simon Wassermann,
*Operations on continuous bundles of $C^*$-algebras*, Math. Ann.**303**(1995), 677–697. - Calvin C. Moore,
*Extensions and low dimensional cohomology theory of locally compact groups. I*, Trans. Amer. Math. Soc.**113**(1964), 40–63. - Calvin C. Moore,
*Extensions and low dimensional cohomology theory of locally compact groups. II*, Trans. Amer. Math. Soc.**113**(1964), 64–86. - Katharina Neumann,
*A description of the Jacobson topology on the spectrum of a transformation group $C^*$-algebras by proper actions*, Ph.D. Thesis, Westfälische Wilhelms-Universität Münster, 2011. - Dorte Olesen and Iain Raeburn,
*Pointwise unitary automorphism groups*, J. Funct. Anal.**93**(1990), no. 2, 278–309. MR**1073288**, DOI 10.1016/0022-1236(90)90130-D - Richard S. Palais,
*On the existence of slices for actions of non-compact Lie groups*, Ann. of Math.**73**(1961), 295–323. - John Phillips and Iain Raeburn,
*Crossed products by locally unitary automorphism groups and principal bundles*, J. Operator Theory**11**(1984), no. 2, 215–241. MR**749160** - Iain Raeburn,
*Induced $C^*$-algebras and a symmetric imprimitivity theorem*, Math. Ann.**280**(1988), no. 3, 369–387. MR**936317**, DOI 10.1007/BF01456331 - Iain Raeburn and Jonathan Rosenberg,
*Crossed products of continuous-trace $C^\ast$-algebras by smooth actions*, Trans. Amer. Math. Soc.**305**(1988), no. 1, 1–45. MR**920145**, DOI 10.1090/S0002-9947-1988-0920145-6 - Iain Raeburn and Dana P. Williams,
*Pull-backs of $C^\ast$-algebras and crossed products by certain diagonal actions*, Trans. Amer. Math. Soc.**287**(1985), no. 2, 755–777. MR**768739**, DOI 10.1090/S0002-9947-1985-0768739-2 - Iain Raeburn and Dana P. Williams,
*Crossed products by actions which are locally unitary on the stabilisers*, J. Funct. Anal.**81**(1988), no. 2, 385–431. MR**971886**, DOI 10.1016/0022-1236(88)90106-1 - Iain Raeburn and Dana P. Williams,
*Moore cohomology, principal bundles, and actions of groups on $C^*$-algebras*, Indiana Univ. Math. J.**40**(1991), no. 2, 707–740. MR**1119194**, DOI 10.1512/iumj.1991.40.40032 - Marc A. Rieffel,
*Proper actions of groups on $C^*$-algebras*, Mappings of operator algebras (Philadelphia, PA, 1988) Progr. Math., vol. 84, Birkhäuser Boston, Boston, MA, 1990, pp. 141–182. MR**1103376** - Marc A. Rieffel,
*Integrable and proper actions on $C^*$-algebras, and square-integrable representations of groups*, Expo. Math.**22**(2004), no. 1, 1–53. MR**2166968**, DOI 10.1016/S0723-0869(04)80002-1 - I. Schochetman,
*The dual topology of certain group extensions*, Adv. in Math.**35**(1980), no. 2, 113–128. MR**560131**, DOI 10.1016/0001-8708(80)90044-4 - Dana P. Williams,
*Crossed products of $C{^\ast }$-algebras*, Mathematical Surveys and Monographs, vol. 134, American Mathematical Society, Providence, RI, 2007. MR**2288954**, DOI 10.1090/surv/134

## Additional Information

**Siegfried Echterhoff**- Affiliation: Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62 D-48149 Münster, Germany
- MR Author ID: 266728
- ORCID: 0000-0001-9443-6451
- Email: echters@uni-muenster.de
**Dana P. Williams**- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755-3551
- MR Author ID: 200378
- Email: dana.williams@Dartmouth.edu
- Received by editor(s): August 21, 2012
- Published electronically: March 4, 2014
- Additional Notes: The research for this paper was partially supported by the German Research Foundation (SFB 478 and SFB 878) and the EU-Network Quantum Spaces Noncommutative Geometry (Contract No. HPRN-CT-2002-00280) as well as the Edward Shapiro Fund at Dartmouth College.
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**366**(2014), 3649-3673 - MSC (2010): Primary 46L55
- DOI: https://doi.org/10.1090/S0002-9947-2014-06263-6
- MathSciNet review: 3192611