## Factoring formal power series over principal ideal domains

HTML articles powered by AMS MathViewer

- by Jesse Elliott PDF
- Trans. Amer. Math. Soc.
**366**(2014), 3997-4019 Request permission

## Abstract:

We provide an irreducibility test and factoring algorithm (with some qualifications) for formal power series in the unique factorization domain $R[[X]]$, where $R$ is any principal ideal domain. We also classify all integral domains arising as quotient rings of $R[[X]]$. Our main tool is a generalization of the $p$-adic Weierstrass preparation theorem to the context of complete filtered commutative rings.## References

- M. Artin,
*On the joins of Hensel rings*, Advances in Math.**7**(1971), 282–296 (1971). MR**289501**, DOI 10.1016/S0001-8708(71)80007-5 - Nicolas Bourbaki,
*Commutative algebra. Chapters 1–7*, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989. Translated from the French; Reprint of the 1972 edition. MR**979760** - James W. Brewer,
*Power series over commutative rings*, Lecture Notes in Pure and Applied Mathematics, vol. 64, Marcel Dekker, Inc., New York, 1981. MR**612477** - Daniel Birmajer and Juan B. Gil,
*Arithmetic in the ring of formal power series with integer coefficients*, Amer. Math. Monthly**115**(2008), no. 6, 541–549. MR**2416254**, DOI 10.1080/00029890.2008.11920560 - Daniel Birmajer, Juan B. Gil, and Michael D. Weiner,
*Factorization of quadratic polynomials in the ring of formal power series over $\Bbb Z$*, J. Algebra Appl.**6**(2007), no. 6, 1027–1037. MR**2376798**, DOI 10.1142/S021949880700265X - Daniel Birmajer, Juan B. Gil, and Michael Weiner,
*Factoring polynomials in the ring of formal power series over $\Bbb Z$*, Int. J. Number Theory**8**(2012), no. 7, 1763–1776. MR**2968949**, DOI 10.1142/S1793042112501011 - David G. Cantor and Daniel M. Gordon,
*Factoring polynomials over $p$-adic fields*, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 185–208. MR**1850606**, DOI 10.1007/10722028_{1}0 - Alexandre L. Chistov,
*Efficient factoring polynomials over local fields and its applications*, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1509–1519. MR**1159333** - Robert Gilmer,
*Some questions for further research*, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 405–415. MR**2265822**, DOI 10.1007/978-0-387-36717-0_{2}4 - Jordi Guàrdia, Enric Nart, and Sebastian Pauli,
*Single-factor lifting and factorization of polynomials over local fields*, J. Symbolic Comput.**47**(2012), no. 11, 1318–1346. MR**2927133**, DOI 10.1016/j.jsc.2012.03.001 - Jordi Guàrdia, Jesús Montes, and Enric Nart,
*Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields*, J. Théor. Nombres Bordeaux**23**(2011), no. 3, 667–696 (English, with English and French summaries). MR**2861080**, DOI 10.5802/jtnb.782 - Jordi Guàrdia, Jesús Montes, and Enric Nart,
*Okutsu invariants and Newton polygons*, Acta Arith.**145**(2010), no. 1, 83–108. MR**2719575**, DOI 10.4064/aa145-1-5 - Serge Lang,
*Algebra*, 2nd ed., Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1984. MR**783636** - Hideyuki Matsumura,
*Commutative ring theory*, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1989. Translated from the Japanese by M. Reid. MR**1011461** - James M. McDonough, Integral domains arising as quotient rings of $\mathbb {Z}[[x]]$, Master’s Thesis, California State University, Channel Islands, 2011.
- Masayoshi Nagata,
*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0155856** - Matthew O’Malley,
*On the Weierstrass preparation theorem*, Rocky Mountain J. Math.**2**(1972), no. 2, 265–273. MR**289500**, DOI 10.1216/RMJ-1972-2-2-265 - Sebastian Pauli,
*Factoring polynomials over local fields*, J. Symbolic Comput.**32**(2001), no. 5, 533–547. MR**1858009**, DOI 10.1006/jsco.2001.0493 - Jean-Pierre Serre,
*Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR**554237** - Hiroki Sumida,
*Greenberg’s conjecture and the Iwasawa polynomial*, J. Math. Soc. Japan**49**(1997), no. 4, 689–711. MR**1466360**, DOI 10.2969/jmsj/04940689

## Additional Information

**Jesse Elliott**- Affiliation: Department of Mathematics, California State University, Channel Islands, One University Drive, Camarillo, California 93012
- Email: jesse.elliott@csuci.edu
- Received by editor(s): December 17, 2011
- Received by editor(s) in revised form: June 22, 2012, and June 26, 2012
- Published electronically: March 26, 2014
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**366**(2014), 3997-4019 - MSC (2010): Primary 13F25, 13F10, 13F15, 13A05; Secondary 11S99
- DOI: https://doi.org/10.1090/S0002-9947-2014-05903-5
- MathSciNet review: 3206450