One-dimensional bad Noetherian domains
HTML articles powered by AMS MathViewer
- by Bruce Olberding PDF
- Trans. Amer. Math. Soc. 366 (2014), 4067-4095 Request permission
Abstract:
Local Noetherian domains arising as local rings of points of varieties or in the context of algebraic number theory are analytically unramified, meaning their completion has no nontrivial nilpotent elements. However, looking elsewhere, many sources of analytically ramified local Noetherian domains have been exhibited over the last seventy-five years. We give a unified approach to a number of such examples by describing classes of DVRs which occur as the normalization of an analytically ramified local Noetherian domain, as well as some that do not occur as such a normalization. We parameterize these examples, or at least large classes of them, using the module of Kähler differentials of a relevant field extension.References
- Y. Akizuki, Einige Bemerkungen über primäre Integritätsbereiche mit Teilerkettensatz, Proc. Phys.–Math. Soc. Japan 17 (1935), 327–336.
- Bruce Bennett, On the structure of non-excellent curve singularities in characteristic $p$, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 129–170. MR 318144
- I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S0002-9947-1946-0016094-3
- Ada Maria de Souza Doering and Yves Lequain, Maximally differential prime ideals, J. Algebra 101 (1986), no. 2, 403–417. MR 847167, DOI 10.1016/0021-8693(86)90201-2
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Daniel Ferrand and Michel Raynaud, Fibres formelles d’un anneau local noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295–311 (French). MR 272779
- László Fuchs and Luigi Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, vol. 84, American Mathematical Society, Providence, RI, 2001. MR 1794715, DOI 10.1090/surv/084
- K. R. Goodearl and T. H. Lenagan, Constructing bad Noetherian local domains using derivations, J. Algebra 123 (1989), no. 2, 478–495. MR 1000498, DOI 10.1016/0021-8693(89)90057-4
- William Heinzer, David Lantz, and Kishor Shah, The Ratliff-Rush ideals in a Noetherian ring, Comm. Algebra 20 (1992), no. 2, 591–622. MR 1146317, DOI 10.1080/00927879208824359
- William Heinzer, Christel Rotthaus, and Judith D. Sally, Formal fibers and birational extensions, Nagoya Math. J. 131 (1993), 1–38. MR 1238631, DOI 10.1017/S0027763000004529
- F. J. Herrera Govantes, M. A. Olalla Acosta, M. Spivakovsky, and B. Teissier, Extending a valuation centred in a local domain to the formal completion, Proc. Lond. Math. Soc. (3) 105 (2012), no. 3, 571–621. MR 2974200, DOI 10.1112/plms/pds002
- Shihoko Ishii, Jet schemes, arc spaces and the Nash problem, C. R. Math. Acad. Sci. Soc. R. Can. 29 (2007), no. 1, 1–21 (English, with English and French summaries). MR 2354631
- W. Krull, Dimensionstheorie in Stellenringen, J. Reine Angew. Math. 179 (1938), 204–226.
- Ernst Kunz, Kähler differentials, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. MR 864975, DOI 10.1007/978-3-663-14074-0
- Christer Lech, A method for constructing bad Noetherian local rings, Algebra, algebraic topology and their interactions (Stockholm, 1983) Lecture Notes in Math., vol. 1183, Springer, Berlin, 1986, pp. 241–247. MR 846452, DOI 10.1007/BFb0075463
- Yves Lequain, Differential simplicity and complete integral closure, Pacific J. Math. 36 (1971), 741–751. MR 284422
- Joseph Lipman, Stable ideals and Arf rings, Amer. J. Math. 93 (1971), 649–685. MR 282969, DOI 10.2307/2373463
- Eben Matlis, $1$-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, Vol. 327, Springer-Verlag, Berlin-New York, 1973. MR 0357391
- Eben Matlis, The theory of $Q$-rings, Trans. Amer. Math. Soc. 187 (1974), 147–181. MR 340241, DOI 10.1090/S0002-9947-1974-0340241-4
- Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Bruce Olberding, On the structure of stable domains, Comm. Algebra 30 (2002), no. 2, 877–895. MR 1883031, DOI 10.1081/AGB-120013188
- Bruce Olberding, Stability, duality, 2-generated ideals and a canonical decomposition of modules, Rend. Sem. Mat. Univ. Padova 106 (2001), 261–290. MR 1876223
- Bruce Olberding, A counterpart to Nagata idealization, J. Algebra 365 (2012), 199–221. MR 2928459, DOI 10.1016/j.jalgebra.2012.05.002
- B. Olberding, Generic formal fibers and analytically ramified stable rings, Nagoya Math. J., to appear.
- Bruce Olberding, Noetherian rings without finite normalization, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 171–203. MR 2932595
- Ana J. Reguera, Towards the singular locus of the space of arcs, Amer. J. Math. 131 (2009), no. 2, 313–350. MR 2503985, DOI 10.1353/ajm.0.0046
- Judith D. Sally, Numbers of generators of ideals in local rings, Marcel Dekker, Inc., New York-Basel, 1978. MR 0485852
- Judith D. Sally and Wolmer V. Vasconcelos, Stable rings, J. Pure Appl. Algebra 4 (1974), 319–336. MR 409430, DOI 10.1016/0022-4049(74)90012-7
- Friedrich Karl Schmidt, Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen, Math. Z. 41 (1936), no. 1, 443–450 (German). MR 1545632, DOI 10.1007/BF01180433
- Charles A. Weibel, $K$-theory and analytic isomorphisms, Invent. Math. 61 (1980), no. 2, 177–197. MR 590161, DOI 10.1007/BF01390120
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Additional Information
- Bruce Olberding
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003-8001
- MR Author ID: 333074
- Received by editor(s): April 18, 2011
- Received by editor(s) in revised form: February 6, 2012, and July 15, 2012
- Published electronically: February 26, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 4067-4095
- MSC (2010): Primary 13E05, 13B35, 13B22; Secondary 13F40
- DOI: https://doi.org/10.1090/S0002-9947-2014-05921-7
- MathSciNet review: 3206452