The cleavage operad and string topology of higher dimension
HTML articles powered by AMS MathViewer
- by Tarje Bargheer PDF
- Trans. Amer. Math. Soc. 366 (2014), 4209-4241 Request permission
Abstract:
For a manifold $N$ embedded inside euclidean space $\mathbb {R}^{n+1}$, we produce a coloured operad that acts on the space of maps from $N$ to $M$, where $M$ is a compact, oriented, smooth manifold. Our main example of interest is $N$, the unit sphere, and we indicate how this gives homological actions, generalizing the action of the spineless cacti operad and retrieving the Chas-Sullivan product by taking $N$ to be the unit circle in $\mathbb {R}^2$. We go on to show that for $S^n$, the unit sphere in $\mathbb {R}^{n+1}$, the operad constructed is a coloured $E_{n+1}$-operad. This $E_{n+1}$-structure is finally twisted by $SO(n+1)$ to homologically agree with actions of the operad of framed little $(n+1)$-disks.References
- Tarje Bargheer, Cultivating operads in string topology, 2008, Master’s Thesis, University of Copenhagen, www.math.ku.dk/$\sim$bargheer.
- —, A colourful approach to string topology, 2011, PhD Thesis, University of Copenhagen, www.math.ku.dk/$\sim$bargheer.
- —, Umkehr maps patched via the compactified cleavage operad, 2012, preprint.
- Clemens Berger, Combinatorial models for real configuration spaces and $E_n$-operads, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 37–52. MR 1436916, DOI 10.1090/conm/202/02582
- Morton Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74–76. MR 117695, DOI 10.1090/S0002-9904-1960-10400-4
- Moira Chas and Dennis Sullivan, String topology, 1999, arXiv.org:math/9911159.
- Ralph L. Cohen and John D. S. Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002), no. 4, 773–798. MR 1942249, DOI 10.1007/s00208-002-0362-0
- Ralph L. Cohen and John R. Klein, Umkehr maps, Homology Homotopy Appl. 11 (2009), no. 1, 17–33. MR 2475820
- Ralph L. Cohen and Alexander A. Voronov, Notes on string topology, String topology and cyclic homology, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2006, pp. 1–95. MR 2240287
- Dan Dugger, A primer on homotopy colimits, http://math.uoregon.edu/$\sim$ddugger/hocolim.pdf, 2008.
- Yves Félix and Jean-Claude Thomas, String topology on Gorenstein spaces, Math. Ann. 345 (2009), no. 2, 417–452. MR 2529482, DOI 10.1007/s00208-009-0361-5
- Kate Gruher and Paolo Salvatore, Generalized string topology operations, Proc. Lond. Math. Soc. (3) 96 (2008), no. 1, 78–106. MR 2392316, DOI 10.1112/plms/pdm030
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Po Hu, Higher string topology on general spaces, Proc. London Math. Soc. (3) 93 (2006), no. 2, 515–544. MR 2251161, DOI 10.1112/S0024611506015838
- Sadok Kallel and Paolo Salvatore, Rational maps and string topology, Geom. Topol. 10 (2006), 1579–1606. MR 2284046, DOI 10.2140/gt.2006.10.1579
- Ralph M. Kaufmann, On several varieties of cacti and their relations, Algebr. Geom. Topol. 5 (2005), 237–300. MR 2135554, DOI 10.2140/agt.2005.5.237
- Tom Leinster, Higher operads, higher categories, London Mathematical Society Lecture Note Series, vol. 298, Cambridge University Press, Cambridge, 2004. MR 2094071, DOI 10.1017/CBO9780511525896
- James E. McClure and Jeffrey H. Smith, Operads and cosimplicial objects: an introduction, Axiomatic, enriched and motivic homotopy theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 131, Kluwer Acad. Publ., Dordrecht, 2004, pp. 133–171. MR 2061854, DOI 10.1007/978-94-007-0948-5_{5}
- Paolo Salvatore and Nathalie Wahl, Framed discs operads and Batalin-Vilkovisky algebras, Q. J. Math. 54 (2003), no. 2, 213–231. MR 1989873, DOI 10.1093/qjmath/54.2.213
- Alexander A. Voronov, Notes on universal algebra, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 81–103. MR 2131012, DOI 10.1090/pspum/073/2131012
Additional Information
- Tarje Bargheer
- Affiliation: Department of Mathematics and Statistics, University of Melbourne, Parkville VIC 3010, Australia
- Address at time of publication: Mathematical Sciences Institute, Australian National University, Canberra ACT 0200, Australia
- Email: bargheer@math.ku.dk
- Received by editor(s): March 1, 2012
- Received by editor(s) in revised form: August 22, 2012
- Published electronically: March 31, 2014
- Additional Notes: The author was supported by a postdoctoral grant from the Carlsberg Foundation
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 366 (2014), 4209-4241
- MSC (2010): Primary 55P50, 18D50
- DOI: https://doi.org/10.1090/S0002-9947-2014-05946-1
- MathSciNet review: 3206457