## Green function estimates for subordinate Brownian motions: Stable and beyond

HTML articles powered by AMS MathViewer

- by Panki Kim and Ante Mimica PDF
- Trans. Amer. Math. Soc.
**366**(2014), 4383-4422 Request permission

## Abstract:

A subordinate Brownian motion $X$ is a Lévy process which can be obtained by replacing the time of the Brownian motion by an independent subordinator. In this paper, when the Laplace exponent $\phi$ of the corresponding subordinator satisfies some mild conditions, we first prove the scale invariant boundary Harnack inequality for $X$ on arbitrary open sets. Then we give an explicit form of sharp two-sided estimates of the Green functions of these subordinate Brownian motions in any bounded $C^{1,1}$ open set. As a consequence, we prove the boundary Harnack inequality for $X$ on any $C^{1,1}$ open set with explicit decay rate. Unlike previous work of Kim, Song and Vondraček, our results cover geometric stable processes and relativistic geometric stable process, i.e. the cases when the subordinator has the Laplace exponent \[ \phi (\lambda )=\log (1+\lambda ^{\alpha /2})\ \ \ \ (0<\alpha \leq 2, d > \alpha )\] and \[ \phi (\lambda )=\log (1+(\lambda +m^{2/\alpha })^{\alpha /2}-m)\ \ \ \ (0<\alpha <2, m>0, d >2) . \]## References

- Jean Bertoin,
*Lévy processes*, Cambridge Tracts in Mathematics, vol. 121, Cambridge University Press, Cambridge, 1996. MR**1406564** - N. H. Bingham, C. M. Goldie, and J. L. Teugels,
*Regular variation*, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR**898871**, DOI 10.1017/CBO9780511721434 - Krzysztof Bogdan, Tadeusz Kulczycki, and Mateusz Kwaśnicki,
*Estimates and structure of $\alpha$-harmonic functions*, Probab. Theory Related Fields**140**(2008), no. 3-4, 345–381. MR**2365478**, DOI 10.1007/s00440-007-0067-0 - Krzysztof Bogdan,
*Sharp estimates for the Green function in Lipschitz domains*, J. Math. Anal. Appl.**243**(2000), no. 2, 326–337. MR**1741527**, DOI 10.1006/jmaa.1999.6673 - Zhen-Qing Chen, Panki Kim, and Renming Song,
*Dirichlet heat kernel estimates for $\Delta ^{\alpha /2}+\Delta ^{\beta /2}$*, Illinois J. Math.**54**(2010), no. 4, 1357–1392 (2012). MR**2981852** - Zhen-Qing Chen, Panki Kim, Renming Song, and Zoran Vondraček,
*Sharp Green function estimates for $\Delta +\Delta ^{\alpha /2}$ in $C^{1,1}$ open sets and their applications*, Illinois J. Math.**54**(2010), no. 3, 981–1024 (2012). MR**2928344** - Zhen-Qing Chen, Panki Kim, Renming Song, and Zoran Vondraček,
*Boundary Harnack principle for $\Delta +\Delta ^{\alpha /2}$*, Trans. Amer. Math. Soc.**364**(2012), no. 8, 4169–4205. MR**2912450**, DOI 10.1090/S0002-9947-2012-05542-5 - Zhen-Qing Chen and Renming Song,
*Estimates on Green functions and Poisson kernels for symmetric stable processes*, Math. Ann.**312**(1998), no. 3, 465–501. MR**1654824**, DOI 10.1007/s002080050232 - Bert Fristedt,
*Sample functions of stochastic processes with stationary, independent increments*, Advances in probability and related topics, Vol. 3, Dekker, New York, 1974, pp. 241–396. MR**0400406** - Wolfhard Hansen,
*Uniform boundary Harnack principle and generalized triangle property*, J. Funct. Anal.**226**(2005), no. 2, 452–484. MR**2160104**, DOI 10.1016/j.jfa.2004.12.010 - Nobuyuki Ikeda and Shinzo Watanabe,
*On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes*, J. Math. Kyoto Univ.**2**(1962), 79–95. MR**142153**, DOI 10.1215/kjm/1250524975 - Panki Kim and Ante Mimica,
*Harnack inequalities for subordinate Brownian motions*, Electron. J. Probab.**17**(2012), no. 37, 23. MR**2928720**, DOI 10.1214/ejp.v17-1930 - M. Kwaśnicki, J. Małecki, and M. Ryznar,
*Suprema of Lévy processes*, Ann. Probab.**41**(2013), 2047–2065. - Panki Kim, Renming Song, and Zoran Vondraček,
*Potential theory of subordinate Brownian motions with Gaussian components*, Stochastic Process. Appl.**123**(2013), no. 3, 764–795. MR**3005005**, DOI 10.1016/j.spa.2012.11.007 - —,
*Potential theory for subordinate Brownian motions revisited*, Stochastic Analysis and its applications to Mathematical Finance, Interdisciplinary Mathematical Sciences, vol. 13, World Scientific, 2012, pp. 243–290. - Panki Kim, Renming Song, and Zoran Vondraček,
*Two-sided Green function estimates for killed subordinate Brownian motions*, Proc. Lond. Math. Soc. (3)**104**(2012), no. 5, 927–958. MR**2928332**, DOI 10.1112/plms/pdr050 - Panki Kim, RenMing Song, and Zoran Vondraček,
*Uniform boundary Harnack principle for rotationally symmetric Lévy processes in general open sets*, Sci. China Math.**55**(2012), no. 11, 2317–2333. MR**2994122**, DOI 10.1007/s11425-012-4516-6 - Tadeusz Kulczycki,
*Properties of Green function of symmetric stable processes*, Probab. Math. Statist.**17**(1997), no. 2, Acta Univ. Wratislav. No. 2029, 339–364. MR**1490808** - Murali Rao, Renming Song, and Zoran Vondraček,
*Green function estimates and Harnack inequality for subordinate Brownian motions*, Potential Anal.**25**(2006), no. 1, 1–27. MR**2238934**, DOI 10.1007/s11118-005-9003-z - MichałRyznar,
*Estimates of Green function for relativistic $\alpha$-stable process*, Potential Anal.**17**(2002), no. 1, 1–23. MR**1906405**, DOI 10.1023/A:1015231913916 - Ken-iti Sato,
*Lévy processes and infinitely divisible distributions*, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR**1739520** - Martin L. Silverstein,
*Classification of coharmonic and coinvariant functions for a Lévy process*, Ann. Probab.**8**(1980), no. 3, 539–575. MR**573292** - PawełSztonyk,
*On harmonic measure for Lévy processes*, Probab. Math. Statist.**20**(2000), no. 2, Acta Univ. Wratislav. No. 2256, 383–390. MR**1825650**

## Additional Information

**Panki Kim**- Affiliation: Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Building 27, 1 Gwanak-ro, Gwanak-gu Seoul 151-747, Republic of Korea
- MR Author ID: 705385
- Email: pkim@snu.ac.kr
**Ante Mimica**- Affiliation: Department of Mathematics, University of Zagreb, Bijenicka Cesta 30, 10000 Zagreb, Croatia
- Email: amimica@math.hr
- Received by editor(s): August 21, 2012
- Received by editor(s) in revised form: November 4, 2012, and November 10, 2012
- Published electronically: January 16, 2014
- Additional Notes: The research of the first author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology(2011-0011199)

The research of the second author was supported in part by the German Science Foundation DFG via IGK “Stochastics and real world models” and SFB 701. - © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**366**(2014), 4383-4422 - MSC (2010): Primary 60J45; Secondary 60J75, 60G51
- DOI: https://doi.org/10.1090/S0002-9947-2014-06017-0
- MathSciNet review: 3206464