Quasifuchsian state surfaces
HTML articles powered by AMS MathViewer
- by David Futer, Efstratia Kalfagianni and Jessica S. Purcell PDF
- Trans. Amer. Math. Soc. 366 (2014), 4323-4343
Abstract:
This paper continues our study of essential state surfaces in link complements that satisfy a mild diagrammatic hypothesis (homogeneously adequate). For hyperbolic links, we show that the geometric type of these surfaces in the Thurston trichotomy is completely determined by a simple graph–theoretic criterion in terms of a certain spine of the surfaces. For links with $A$– or $B$–adequate diagrams, the geometric type of the surface is also completely determined by a coefficient of the colored Jones polynomial of the link.References
- Colin Adams, Noncompact Fuchsian and quasi-Fuchsian surfaces in hyperbolic 3-manifolds, Algebr. Geom. Topol. 7 (2007), 565–582. MR 2308957, DOI 10.2140/agt.2007.7.565
- Francis Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. (2) 124 (1986), no. 1, 71–158 (French). MR 847953, DOI 10.2307/1971388
- R. D. Canary, D. B. A. Epstein, and P. Green, Notes on notes of Thurston, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 3–92. MR 903850
- Jae Choon Cha and Charles Livingston, Knotinfo: Table of knot invariants, http://www.indiana.edu/˜knotinfo, 2011.
- D. Cooper and D. D. Long, Some surface subgroups survive surgery, Geom. Topol. 5 (2001), 347–367. MR 1825666, DOI 10.2140/gt.2001.5.347
- P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), no. 3, 535–552. MR 1002465, DOI 10.1112/jlms/s2-39.3.535
- Oliver T. Dasbach, David Futer, Efstratia Kalfagianni, Xiao-Song Lin, and Neal W. Stoltzfus, The Jones polynomial and graphs on surfaces, J. Combin. Theory Ser. B 98 (2008), no. 2, 384–399. MR 2389605, DOI 10.1016/j.jctb.2007.08.003
- Oliver T. Dasbach and Xiao-Song Lin, On the head and the tail of the colored Jones polynomial, Compos. Math. 142 (2006), no. 5, 1332–1342. MR 2264669, DOI 10.1112/S0010437X06002296
- Sérgio R. Fenley, Quasi-Fuchsian Seifert surfaces, Math. Z. 228 (1998), no. 2, 221–227. MR 1630563, DOI 10.1007/PL00004607
- Elizabeth Finkelstein and Yoav Moriah, Tubed incompressible surfaces in knot and link complements, Topology Appl. 96 (1999), no. 2, 153–170. MR 1702308, DOI 10.1016/S0166-8641(98)00043-1
- Elizabeth Finkelstein and Yoav Moriah, Closed incompressible surfaces in knot complements, Trans. Amer. Math. Soc. 352 (2000), no. 2, 655–677. MR 1487613, DOI 10.1090/S0002-9947-99-02233-3
- David Futer, Fiber detection for state surfaces, Algebr. Geom. Topol. 13 (2013), no. 5, 2799–2807. MR 3116303, DOI 10.2140/agt.2013.13.2799
- David Futer, Efstratia Kalfagianni, and Jessica Purcell, Guts of surfaces and the colored Jones polynomial, Lecture Notes in Mathematics, vol. 2069, Springer, Heidelberg, 2013. MR 3024600, DOI 10.1007/978-3-642-33302-6
- David Futer, Efstratia Kalfagianni, and Jessica Purcell, Jones polynomials, volume, and essential knot surfaces: a survey, Proceedings of Knots in Poland III, Banach Center Publications 100 (2014), Issue 1, 51–77.
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591
- William Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR 565450
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7
- Marc Lackenby, The volume of hyperbolic alternating link complements, Proc. London Math. Soc. (3) 88 (2004), no. 1, 204–224. With an appendix by Ian Agol and Dylan Thurston. MR 2018964, DOI 10.1112/S0024611503014291
- W. B. R. Lickorish and M. B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), no. 4, 527–539. MR 966948, DOI 10.1007/BF02566777
- Joseph D. Masters and Xingru Zhang, Closed quasi-Fuchsian surfaces in hyperbolic knot complements, Geom. Topol. 12 (2008), no. 4, 2095–2171. MR 2431017, DOI 10.2140/gt.2008.12.2095
- William Menasco and Alan W. Reid, Totally geodesic surfaces in hyperbolic link complements, Topology ’90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 215–226. MR 1184413
- Makoto Ozawa, Essential state surfaces for knots and links, J. Aust. Math. Soc. 91 (2011), no. 3, 391–404. MR 2900614, DOI 10.1017/S1446788712000055
- Józef H. Przytycki, From Goeritz matrices to quasi-alternating links, The mathematics of knots, Contrib. Math. Comput. Sci., vol. 1, Springer, Heidelberg, 2011, pp. 257–316. MR 2777853, DOI 10.1007/978-3-642-15637-3_{9}
- Morwen Thistlethwaite and Anastasiia Tsvietkova, An alternative approach to hyperbolic structures on link complements, Algebr. Geom. Topol. 14 (2014), no. 3, 1307–1337. MR 3190595, DOI 10.2140/agt.2014.14.1307
- Morwen B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), no. 2, 285–296. MR 948102, DOI 10.1007/BF01394334
- William P. Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Notes, 1979.
- Yukihiro Tsutsumi, Hyperbolic knots spanning accidental Seifert surfaces of arbitrarily high genus, Math. Z. 246 (2004), no. 1-2, 167–175. MR 2031451, DOI 10.1007/s00209-003-0593-0
- Anastasiia Tsvietkova, Hyperbolic Structures from Link Diagrams, ProQuest LLC, Ann Arbor, MI, 2012. Thesis (Ph.D.)–The University of Tennessee. MR 3121975
- Daniel T. Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006), no. 3, 421–463. MR 2218750, DOI 10.1016/j.top.2005.06.004
- Ying-Qing Wu, Incompressible surfaces in link complements, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3417–3423. MR 1845021, DOI 10.1090/S0002-9939-01-05938-X
Additional Information
- David Futer
- Affiliation: Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122
- MR Author ID: 671567
- ORCID: 0000-0002-2595-6274
- Email: dfuter@temple.edu
- Efstratia Kalfagianni
- Affiliation: Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
- Email: kalfagia@math.msu.edu
- Jessica S. Purcell
- Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
- MR Author ID: 807518
- ORCID: 0000-0002-0618-2840
- Email: jpurcell@math.byu.edu
- Received by editor(s): October 4, 2012
- Published electronically: April 22, 2014
- Additional Notes: The first author was supported in part by NSF grant DMS–1007221.
The second author was supported in part by NSF grant DMS–1105843.
The third author was supported in part by NSF grant DMS–1007437 and a Sloan Research Fellowship. - © Copyright 2014 by the authors
- Journal: Trans. Amer. Math. Soc. 366 (2014), 4323-4343
- MSC (2010): Primary 57M50, 57M27, 57M25; Secondary 20H10
- DOI: https://doi.org/10.1090/S0002-9947-2014-06182-5
- MathSciNet review: 3206461