Asymptotic expansions for Toeplitz operators on symmetric spaces of general type
HTML articles powered by AMS MathViewer
- by Miroslav Engliš and Harald Upmeier PDF
- Trans. Amer. Math. Soc. 367 (2015), 423-476 Request permission
Abstract:
A general theory of Berezin-Toeplitz quantization for symmetric spaces is presented, with emphasis on representation-theoretic asymptotic expansions, which applies to spaces of compact and non-compact type, both in the classical setting of hermitian symmetric spaces and also for their real forms. The Berezin (or Wick type) calculus and its opposite “anti-Wick” type calculus are treated on an equal footing.References
- S. Twareque Ali and Miroslav Engliš, Quantization methods: a guide for physicists and analysts, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, DOI 10.1142/S0129055X05002376
- Jonathan Arazy and Bent Ørsted, Asymptotic expansions of Berezin transforms, Indiana Univ. Math. J. 49 (2000), no. 1, 7–30. MR 1777039, DOI 10.1512/iumj.2000.49.1815
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vols. I, II, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman. MR 0058756
- David Borthwick, Andrzej Lesniewski, and Harald Upmeier, Nonperturbative deformation quantization of Cartan domains, J. Funct. Anal. 113 (1993), no. 1, 153–176. MR 1214901, DOI 10.1006/jfan.1993.1050
- Martin Bordemann, Eckhard Meinrenken, and Martin Schlichenmaier, Toeplitz quantization of Kähler manifolds and $\textrm {gl}(N)$, $N\to \infty$ limits, Comm. Math. Phys. 165 (1994), no. 2, 281–296. MR 1301849, DOI 10.1007/BF02099772
- Benjamin Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beitr. Algebra Geom. 53 (2012), no. 2, 461–471. MR 2971754, DOI 10.1007/s13366-011-0066-2
- Miroslav Engliš, Weighted Bergman kernels and quantization, Comm. Math. Phys. 227 (2002), no. 2, 211–241. MR 1903645, DOI 10.1007/s002200200634
- Miroslav Engliš, Berezin-Toeplitz quantization on the Schwartz space of bounded symmetric domains, J. Lie Theory 15 (2005), no. 1, 27–50. MR 2115226
- Miroslav Engliš and Harald Upmeier, Toeplitz quantization and asymptotic expansions for real bounded symmetric domains, Math. Z. 268 (2011), no. 3-4, 931–967. MR 2818737, DOI 10.1007/s00209-010-0702-9
- Miroslav Engliš and Harald Upmeier, Toeplitz quantization and asymptotic expansions: geometric construction, SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009), Paper 021, 30. MR 2481471, DOI 10.3842/SIGMA.2009.021
- Miroslav Engliš and Harald Upmeier, Toeplitz quantization and asymptotic expansions: Peter-Weyl decomposition, Integral Equations Operator Theory 68 (2010), no. 3, 427–449. MR 2735445, DOI 10.1007/s00020-010-1808-5
- Miroslav Engliš and Harald Upmeier, Real Berezin transform and asymptotic expansion for symmetric spaces of compact and non-compact type, Recent progress in operator theory and its applications, Oper. Theory Adv. Appl., vol. 220, Birkhäuser/Springer Basel AG, Basel, 2012, pp. 97–114. MR 2953873, DOI 10.1007/978-3-0348-0346-5_{6}
- Miroslav Engliš and Genkai Zhang, Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces, Math. Z. 264 (2010), no. 4, 901–912. MR 2593299, DOI 10.1007/s00209-009-0495-x
- J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), no. 1, 64–89. MR 1033914, DOI 10.1016/0022-1236(90)90119-6
- Frank Forelli, Measures whose Poisson integrals are pluriharmonic, Illinois J. Math. 18 (1974), 373–388. MR 342723
- Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
- Alexander V. Karabegov and Martin Schlichenmaier, Identification of Berezin-Toeplitz deformation quantization, J. Reine Angew. Math. 540 (2001), 49–76. MR 1868597, DOI 10.1515/crll.2001.086
- Ewa Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), no. 3, 257–272. MR 1019793, DOI 10.4064/sm-94-3-257-272
- O. Loos, Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977.
- Martin Schlichenmaier, Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, Conférence Moshé Flato 1999, Vol. II (Dijon), Math. Phys. Stud., vol. 22, Kluwer Acad. Publ., Dordrecht, 2000, pp. 289–306. MR 1805922
- A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), no. 3, 563–597. MR 1291245, DOI 10.1007/BF02101491
- Genkai Zhang, Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3769–3787. MR 1837258, DOI 10.1090/S0002-9947-01-02832-X
- Genkai Zhang, Berezin transform on compact Hermitian symmetric spaces, Manuscripta Math. 97 (1998), no. 3, 371–388. MR 1654800, DOI 10.1007/s002290050109
- Genkai Zhang, Branching coefficients of holomorphic representations and Segal-Bargmann transform, J. Funct. Anal. 195 (2002), no. 2, 306–349. MR 1940358, DOI 10.1006/jfan.2002.3957
- Genkai Zhang, Degenerate principal series representations and their holomorphic extensions, Adv. Math. 223 (2010), no. 5, 1495–1520. MR 2592500, DOI 10.1016/j.aim.2009.09.014
Additional Information
- Miroslav Engliš
- Affiliation: Mathematics Institute, Silesian University at Opava, Na Rybníčku 1, 74601 Opava, Czech Republic — and — Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
- Email: englis{@}math.cas.cz
- Harald Upmeier
- Affiliation: Fachbereich Mathematik, Universität Marburg, D-35032 Marburg, Germany
- Email: upmeier{@}mathematik.uni-marburg.de
- Received by editor(s): April 27, 2012
- Received by editor(s) in revised form: March 9, 2013
- Published electronically: March 31, 2014
- Additional Notes: The first author’s research was supported by GAČR grant no. 201/09/0473 and AV ČR institutional research plan AV0Z10190503.
The second author’s research was supported by GIF grant no. 696-17.6/2001 - © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 423-476
- MSC (2010): Primary 32M15; Secondary 46E22, 47B35, 53D55
- DOI: https://doi.org/10.1090/S0002-9947-2014-06130-8
- MathSciNet review: 3271267