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ERRATUM TO

“A CONNES-AMENABLE, DUAL BANACH ALGEBRA

NEED NOT HAVE A NORMAL, VIRTUAL DIAGONAL”

VOLKER RUNDE

Abstract. In Trans. Amer. Math. Soc., vol. 358 (2006), pp. 391–402, we
claimed that, for an amenable, non-compact [SIN]-group G, the dual Banach
algebra WAP(G)∗ is Connes-amenable, but lacks a normal virtual diagonal.
The proof presented contains a gap. In this erratum, we indicate how the
faulty proof can be repaired.

Introduction

In [5], the claim was made that, for a non-compact [SIN]-group G, the dual
Banach algebra WAP(G)∗ lacked a normal, virtual diagonal ([5, Theorem 3.5]). It
is straightforward that WAP(G)∗ is Connes-amenable for every amenable, locally
compact group G. The proof for the non-existence of a normal, virtual diagonal for
WAP(G)∗ if G is a non-compact [SIN]-group, however, is more subtle.

In [5], we proceeded through the following steps:

(1) the existence of a normal, virtual diagonal for WAP(G)∗ forces the closed
ideal C0(G)⊥ ∼= M(GWAP \G) of WAP(G)∗ to have an identity (here, GWAP
denotes the weakly almost periodic compactification of G);

(2) this identity has norm one (this is at the heart of the proof of [5, Corollary
2.3]);

(3) this forces the semigroup GWAP \G to have an identity ([5, Proposition 2.1]);
(4) if G is a non-compact [SIN]-group, this is impossible due to work by S. Ferri

and D. Strauss ([2]).

As it turns out, step (2) contains a gap: the argument to show that an identity
of C0(G)⊥ necessarily has norm one is not valid. In this erratum, we indicate
how this difficulty can be circumvented, so that the main result of [5] remains
valid. In the process, we extend a result by L. J. Lardy that characterizes those
abelian, locally compact, semitopological semigroups whose measure algebras have
an identity ([4, Theorem 3.3]) to the not necessarily abelian situation.
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1. Left identities in measure algebras of locally compact

semitopological semigroups

A semitopological semigroup is a semigroup equipped with a Hausdorff topology
such that the multiplication is separately continuous; if the underlying topological
space is locally compact, we speak of a locally compact, semitopological semigroup.
If S is a locally compact, semitopological semigroup, then the Banach spaceM(S) ∼=
C0(S)∗ of all regular complex measures on S becomes a Banach algebra through
convolution, i.e.,

〈f, μ ∗ ν〉 :=
∫
S

∫
S

f(st) dμ(s) dν(t) (μ, ν ∈ M(S), f ∈ C0(S)).

Obviously, if S has an identity, say e, then M(S) has an identity, namely the point
mass δe. On the other hand, there are finite, abelian semigroups S without an
identity such that �1(S) has an identity ([3, 11.1.6]).

In [3], those abelian semigroups S for which �1(S) has an identity were char-
acterized. This result was later extended to the general locally compact (but still
abelian) situation by L. J. Lardy ([4]). We prove a “left version” of Lardy’s result
for not necessarily abelian, locally compact, semitopological semigroups.

Definition 1.1. Let S be a semigroup. A set U ⊂ S is called a set of local left
units for S if, for each s ∈ S, there is u ∈ U with us = s. A set of local left units
for S is called minimal if none of its proper subsets is a set of local left units for S.

Theorem 1.2. The following are equivalent for a locally compact, semitopological
semigroup:

(i) M(S) has a left identity;
(ii) S contains a minimal, finite set of local left units.

We follow Lardy’s proof and indicate where adjustments have to be made.

Lemma 1.3. Let S be a semigroup, and let U ⊂ S be a set of local left units for
S. Then the following are equivalent:

(i) U is minimal;
(ii) if u, v ∈ U and vu = u, then v = u.

Proof. (i) =⇒ (ii): Same as (i) =⇒ (ii) in the proof of [4, Proposition 2.1]
(ii) =⇒ (i): Assume that U is not minimal, i.e., there is u ∈ U such that U \ {u}

is a set of local left units for S. Then there is v ∈ U \ {u} such that vu = u. By
(ii), this means that v = u, which is impossible. (Compare the proof of (iii) =⇒ (i)
of [4, Proposition 2.1].) �

Corollary 1.4. Let S be a semigroup, and let U ⊂ S be a minimal set of local left
units for S. Then U consists of idempotents.

Lemma 1.5. Let S be a locally compact, semitopological semigroup, and let K ⊂ S
be a compact set of local left units for S. Then K contains a minimal set of local
left units for S.

Proof. Just as the proof of [4, Proposition 2.4]. �

Lemma 1.6. Let S be a locally compact, semitopological semigroup such that M(S)
has a left identity λ. Then λ({t ∈ S : ts = s}) = 1 holds for each s ∈ S.
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Proof. Just as the proof of [4, Lemma 3.1]. �

Proof of Theorem 1.2. (i) =⇒ (ii): Suppose that M(S) has a left identity λ. As the
variation |λ| of λ is regular, there is a compact set K ⊂ S such that |λ|(G\K) < 1.
For s ∈ S, set Xs := {t ∈ S : ts = s}, and note that

1 ≤ |λ|(Xs) = |λ|(Xs ∩K) + |λ|(Xs \K)

by Lemma 1.6. As |λ|(Xs \K) ≤ |λ|(G \K) < 1, it follows that |λ|(Xs ∩K) > 0,
so that, in particular, Xs ∩K �= ∅. This means that K is a set of local left units
for S. By Lemma 1.5, K contains a minimal set U of local left units for S. Let
u, v ∈ U be such that Xu∩Xv �= ∅, i.e., there is t ∈ S such that tu = u and tv = v.
As U is a set of local left units for S, there is w ∈ U such that wt = t; it follows
that wu = wtu = tu = u and, similarly, wv = v. Since U is minimal, Lemma 1.3
yields that u = w = v. This means that, for u, v ∈ U such that u �= v, we have
Xu ∩Xv = ∅. As λ(Xs) = 1 for s ∈ S by Lemma 1.6, this is possible only if U is
finite.

(ii) =⇒ (i): Let {u1, . . . , uN} be a finite, minimal set of local left units for S.
Then it is routine to verify that

N∑
n=1

(−1)n+1
∑

1≤j1<···<jn≤N

δuj1
···ujn

is a left identity for M(S). �

Remark. Already in [3], it was observed that a “left version” of [3, Theorems 7.3
and 7.5], i.e., Theorem 1.2 in the discrete case, holds ([3, 7.4]).

2. Non-existence of a normal, virtual diagonal for WAP(G)∗

if G is a non-compact [SIN]-group

We shall now use Theorem 1.2 to give a valid proof of [5, Theorem 3.5]:

Theorem 2.1. Let G be a non-compact [SIN]-group. Then WAP(G)∗ does not
have a normal, virtual diagonal.

As we already pointed out in the introduction, the existence of a normal, virtual
diagonal for WAP(G)∗ forces M(GWAP \G) to have a (left) identity. From there,
we shall arrive at a contradiction.

The following theorem is essentially [1, Corollary 4]:

Theorem 2.2. Let G be a non-compact [SIN]-group, and let Ω denote the interior
of the set

{x ∈ GWAP \G : ux �= x for all u ∈ GWAP \ {e}}.
Then Ω is dense in GWAP \G, and ΩG ⊂ Ω holds.

Proof. The first part of the theorem follows immediately from [1, Corollary 4], and
the second part is clear because GWAP \G is an ideal of GWAP and G operates on
GWAP from the right as bijections. �

Linking Theorems 1.2 and 2.2, we obtain:

Proposition 2.3. Let G be a non-compact [SIN]-group. Then M(GWAP \G) does
not have a left identity.
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Proof. Assume towards a contradiction thatM(GWAP\G) has a left identity. Then
Theorem 1.2 asserts that there is a finite set U of local left units for GWAP \G. Let
Ω be the set specified in Theorem 2.2. As

⋃
u∈U uG is dense in GWAP \G, it follows

that Ω ∩
⋃

u∈U uG �= ∅, so that Ω ∩ u0G �= ∅ for some u0 ∈ U . Since ΩG ⊂ Ω,

this means that u0 ∈ Ω. By Corollary 1.4, u2
0 = u0 holds, which contradicts the

definition of Ω. �
Remark. For the proof of Proposition 2.3, it was only needed that the set U consists
of idempotents, but not that it is finite.
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