Cone avoiding closed sets
HTML articles powered by AMS MathViewer
- by Lu Liu PDF
- Trans. Amer. Math. Soc. 367 (2015), 1609-1630 Request permission
Abstract:
We prove that for an arbitrary subtree $T$ of $2^{<\omega }$ with each element extendable to a path, a given countable class $\mathcal {M}$ closed under disjoint union, and any set $A$, if none of the members of $\mathcal {M}$ strongly $k$-enumerate $T$ for any $k$, then there exists an infinite set contained in either $A$ or $\bar {A}$ such that for every $C\in \mathcal {M}$, $C\oplus G$ also does not strongly $k$-enumerate $T$. We give applications of this result, which include: (1) $\mathsf {RT_2^2}$ doesn’t imply $\mathsf {WWKL_0}$; (2) [Ambos-Spies et al., 2004] $\mathsf {DNR}$ is strictly weaker than $\mathsf {WWKL_0}$; (3) [Kjos-Hanssen, 2009] for any Martin-Löf random set $A$, either $A$ or $\bar {A}$ contains an infinite subset that does not compute any Martin-Löf random set; etc. We also discuss further generalizations of this result.References
- Klaus Ambos-Spies, Bjørn Kjos-Hanssen, Steffen Lempp, and Theodore A. Slaman, Comparing DNR and WWKL, J. Symbolic Logic 69 (2004), no. 4, 1089–1104. MR 2135656, DOI 10.2178/jsl/1102022212
- Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpre, Andrej Muchnik, Frank Stephan, and Leen Torenvliet, Enumerations of the Kolmogorov function, J. Symbolic Logic 71 (2006), no. 2, 501–528. MR 2225891, DOI 10.2178/jsl/1146620156
- Peter A. Cholak, Carl G. Jockusch Jr., and Theodore A. Slaman, Corrigendum to: “On the strength of Ramsey’s theorem for pairs” [MR1825173], J. Symbolic Logic 74 (2009), no. 4, 1438–1439. MR 2583829, DOI 10.2178/jsl/1254748700
- Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey’s theorem for pairs, J. Symbolic Logic 66 (2001), no. 1, 1–55. MR 1825173, DOI 10.2307/2694910
- Rodney G. Downey and Denis R. Hirschfeldt, Algorithmic randomness and complexity, Theory and Applications of Computability, Springer, New York, 2010. MR 2732288, DOI 10.1007/978-0-387-68441-3
- Damir D. Dzhafarov and Carl G. Jockusch Jr., Ramsey’s theorem and cone avoidance, J. Symbolic Logic 74 (2009), no. 2, 557–578. MR 2518811, DOI 10.2178/jsl/1243948327
- Harvey Friedman, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 235–242. MR 0429508
- Harvey Friedman, Systems of second order arithmetic with restricted induction, i, ii, Journal of Symbolic Logic 41 (1976), no. 2, 557–559.
- Noam Greenberg and Joseph S. Miller, Diagonally non-recursive functions and effective Hausdorff dimension, Bull. Lond. Math. Soc. 43 (2011), no. 4, 636–654. MR 2820150, DOI 10.1112/blms/bdr003
- D. R. Hirschfeldt, C. G. Jockusch Jr., B. Kjos-Hanssen, S. Lempp, and T. A. Slaman, The strength of some combinatorial principles related to Ramsey’s theorem for pairs, Computational Prospects of Infinity: Presented talks 14 (2008), 143–161.
- Jiayi Liu, ${\mathsf {RT}}^2_2$ does not imply ${\mathsf {WKL}}_0$, J. Symbolic Logic 77 (2012), no. 2, 609–620. MR 2963024, DOI 10.2178/jsl/1333566640
- Carl G. Jockusch Jr., Ramsey’s theorem and recursion theory, J. Symbolic Logic 37 (1972), 268–280. MR 376319, DOI 10.2307/2272972
- Bjørn Kjos-Hanssen, Infinite subsets of random sets of integers, Math. Res. Lett. 16 (2009), no. 1, 103–110. MR 2480564, DOI 10.4310/MRL.2009.v16.n1.a10
- Bjørn Kjos-Hanssen, A strong law of computationally weak subsets, J. Math. Log. 11 (2011), no. 1, 1–10. MR 2833148, DOI 10.1142/S0219061311000980
- Masahiro Kumabe and Andrew E. M. Lewis, A fixed-point-free minimal degree, J. Lond. Math. Soc. (2) 80 (2009), no. 3, 785–797. MR 2559129, DOI 10.1112/jlms/jdp049
- Jack H. Lutz, Gales and the constructive dimension of individual sequences, Automata, languages and programming (Geneva, 2000) Lecture Notes in Comput. Sci., vol. 1853, Springer, Berlin, 2000, pp. 902–913. MR 1795945, DOI 10.1007/3-540-45022-X_{7}6
- Elvira Mayordomo, A Kolmogorov complexity characterization of constructive Hausdorff dimension, Inform. Process. Lett. 84 (2002), no. 1, 1–3. MR 1926330, DOI 10.1016/S0020-0190(02)00343-5
- Joseph S. Miller, Extracting information is hard: a Turing degree of non-integral effective Hausdorff dimension, Adv. Math. 226 (2011), no. 1, 373–384. MR 2735764, DOI 10.1016/j.aim.2010.06.024
- André Nies, Computability and randomness, Oxford Logic Guides, vol. 51, Oxford University Press, Oxford, 2009. MR 2548883, DOI 10.1093/acprof:oso/9780199230761.001.0001
- F. P. Ramsey, On a Problem of Formal Logic, Proc. London Math. Soc. (2) 30 (1929), no. 4, 264–286. MR 1576401, DOI 10.1112/plms/s2-30.1.264
- B. Ya. Ryabko, Coding of combinatorial sources and Hausdorff dimension, Dokl. Akad. Nauk SSSR 277 (1984), no. 5, 1066–1070 (Russian). MR 759967
- David Seetapun and Theodore A. Slaman, On the strength of Ramsey’s theorem, Notre Dame J. Formal Logic 36 (1995), no. 4, 570–582. Special Issue: Models of arithmetic. MR 1368468, DOI 10.1305/ndjfl/1040136917
- Stephen G. Simpson, Subsystems of second order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1999. MR 1723993, DOI 10.1007/978-3-642-59971-2
Additional Information
- Lu Liu
- Affiliation: Department of Mathematics, Central South University, ChangSha 410083, People’s Republic of China
- MR Author ID: 980145
- Email: g.jiayi.liu@gmail.com
- Received by editor(s): November 20, 2010
- Received by editor(s) in revised form: December 12, 2012
- Published electronically: November 4, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 1609-1630
- MSC (2010): Primary 03B30; Secondary 03F35, 03C62, 68Q30, 03D32, 03D80, 28A78
- DOI: https://doi.org/10.1090/S0002-9947-2014-06049-2
- MathSciNet review: 3286494