Nonabelian Poincaré duality after stabilizing
HTML articles powered by AMS MathViewer
- by Jeremy Miller PDF
- Trans. Amer. Math. Soc. 367 (2015), 1969-1991 Request permission
Abstract:
We generalize the nonabelian Poincaré duality theorems of Salvatore and Lurie to the case of not necessarily grouplike $E_n$-algebras (in the category of spaces). We define a stabilization procedure based on McDuff’s “bringing points in from infinity” maps. For open connected parallelizable $n$-manifolds, we prove that, after stabilizing, the topological chiral homology of $M$ with coefficients in an $E_n$-algebra $A$, $\int _M A$, is homology equivalent to $Map^c(M,B^n A)$, the space of compactly supported maps to the $n$-fold classifying space of $A$.References
- Ricardo Andrade, From manifolds to invariants of En-algebras, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2898647
- C.-F. Bödigheimer, Stable splittings of mapping spaces, Algebraic topology (Seattle, Wash., 1985) Lecture Notes in Math., vol. 1286, Springer, Berlin, 1987, pp. 174–187. MR 922926, DOI 10.1007/BFb0078741
- Charles P. Boyer and Benjamin M. Mann, Monopoles, nonlinear $\sigma$ models, and two-fold loop spaces, Comm. Math. Phys. 115 (1988), no. 4, 571–594. MR 933456
- Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 97062, DOI 10.2307/1970005
- John Francis, The tangent complex and Hochschild cohomology of $\scr E_n$-rings, Compos. Math. 149 (2013), no. 3, 430–480. MR 3040746, DOI 10.1112/S0010437X12000140
- Ezra Getzler and Jones John, Operads, homotopy algebra and iterated integrals for double loop spaces, arXiv:hep-th/9403055 (1994).
- John L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215–249. MR 786348, DOI 10.2307/1971172
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Sadok Kallel, Spaces of particles on manifolds and generalized Poincaré dualities, Q. J. Math. 52 (2001), no. 1, 45–70. MR 1820902, DOI 10.1093/qjmath/52.1.45
- Jacob Lurie, On the classification of topological field theories, Current developments in mathematics, 2008, Int. Press, Somerville, MA, 2009, pp. 129–280. MR 2555928
- J. P. May, The geometry of iterated loop spaces, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR 0420610
- Dusa McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107. MR 358766, DOI 10.1016/0040-9383(75)90038-5
- D. McDuff and G. Segal, Homology fibrations and the “group-completion” theorem, Invent. Math. 31 (1975/76), no. 3, 279–284. MR 402733, DOI 10.1007/BF01403148
- Oscar Randal-Williams, Homological stability for unordered configuration spaces, Q. J. Math. 64 (2013), no. 1, 303–326. MR 3032101, DOI 10.1093/qmath/har033
- Paolo Salvatore, Configuration spaces with summable labels, Cohomological methods in homotopy theory (Bellaterra, 1998) Progr. Math., vol. 196, Birkhäuser, Basel, 2001, pp. 375–395. MR 1851264
- Graeme Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105–112. MR 232393
- Graeme Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), no. 1-2, 39–72. MR 533892, DOI 10.1007/BF02392088
Additional Information
- Jeremy Miller
- Affiliation: Department of Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016
- MR Author ID: 1009804
- Email: jmiller@gc.cuny.edu
- Received by editor(s): September 28, 2012
- Received by editor(s) in revised form: March 20, 2013
- Published electronically: September 30, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 1969-1991
- MSC (2010): Primary 55P48
- DOI: https://doi.org/10.1090/S0002-9947-2014-06186-2
- MathSciNet review: 3286505