Dynamics and Zeta functions on conformally compact manifolds
Authors:
Julie Rowlett, Pablo Suárez-Serrato and Samuel Tapie
Journal:
Trans. Amer. Math. Soc. 367 (2015), 2459-2486
MSC (2010):
Primary 37D40, 58J50, 53C22, 53D25, 35P15.
DOI:
https://doi.org/10.1090/S0002-9947-2014-05999-0
Published electronically:
November 24, 2014
MathSciNet review:
3301870
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this note, we study the dynamics and associated Zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variable negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical Zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical Zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.
- James W. Anderson and André C. Rocha, Analyticity of Hausdorff dimension of limit sets of Kleinian groups, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 349–364. MR 1469796
- Michael T. Anderson, Geometric aspects of the AdS/CFT correspondence, AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, 2005, pp. 1–31. MR 2160865, DOI https://doi.org/10.4171/013-1/1
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
- Eric Bahuaud, Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics, Pacific J. Math. 239 (2009), no. 2, 231–249. MR 2457230, DOI https://doi.org/10.2140/pjm.2009.239.231
- David Borthwick and Peter A. Perry, Inverse scattering results for manifolds hyperbolic near infinity, J. Geom. Anal. 21 (2011), no. 2, 305–333. MR 2772075, DOI https://doi.org/10.1007/s12220-010-9149-9
- B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274. MR 1317633, DOI https://doi.org/10.1215/S0012-7094-95-07709-6
- Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460. MR 339281, DOI https://doi.org/10.2307/2373793
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI https://doi.org/10.1007/BF01389848
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486
- Gonzalo Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z. 210 (1992), no. 1, 97–111. MR 1161172, DOI https://doi.org/10.1007/BF02571785
- Françoise Dal’bo, Topologie du feuilletage fortement stable, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 981–993 (French, with English and French summaries). MR 1779902
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI https://doi.org/10.1007/BF01405172
- Jürgen Eichhorn, The essential spectrum of non-simply-connected open complete Riemannian manifolds, Ann. Global Anal. Geom. 2 (1984), no. 1, 1–18. MR 755207, DOI https://doi.org/10.1007/BF01871943
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492–510. MR 310926, DOI https://doi.org/10.2307/1970869
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57–82. MR 314084, DOI https://doi.org/10.1090/S0002-9947-1973-0314084-0
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 491–517. MR 875085
- Colin Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005), no. 1, 1–37. MR 2153454, DOI https://doi.org/10.1215/S0012-7094-04-12911-2
- Colin Guillarmou and Frédéric Naud, Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds, Comm. Anal. Geom. 14 (2006), no. 5, 945–967. MR 2287151
- L. Guillopé and M. Zworski, The wave trace for Riemann surfaces, Geom. Funct. Anal. 9 (1999), no. 6, 1156–1168. MR 1736931, DOI https://doi.org/10.1007/s000390050110
- Boris Hasselblatt, Horospheric foliations and relative pinching, J. Differential Geom. 39 (1994), no. 1, 57–63. MR 1258914
- Nicolai T. A. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 347–360. MR 1062762, DOI https://doi.org/10.1017/S0143385700005587
- Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977), no. 4, 481–491 (1978). MR 512919
- Morris W. Hirsch and Charles C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975), 225–238. MR 368077
- Dmitry Jakobson, Iosif Polterovich, and John A. Toth, A lower bound for the remainder in Weyl’s law on negatively curved surfaces, Int. Math. Res. Not. IMRN 2 (2008), Art. ID rnm142, 38. MR 2418855, DOI https://doi.org/10.1093/imrn/rnm142
- A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581–597. MR 1022308, DOI https://doi.org/10.1007/BF01393838
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI https://doi.org/10.1016/0022-1236%2882%2990050-7
- A. Marden, Outer circles, Cambridge University Press, Cambridge, 2007. An introduction to hyperbolic 3-manifolds. MR 2355387
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), no. 2, 309–339. MR 961517
- Rafe Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991), no. 1, 25–45. MR 1087800, DOI https://doi.org/10.2307/2374820
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI https://doi.org/10.1016/0022-1236%2887%2990097-8
- Jean-Pierre Otal and Marc Peigné, Principe variationnel et groupes kleiniens, Duke Math. J. 125 (2004), no. 1, 15–44 (French, with English and French summaries). MR 2097356, DOI https://doi.org/10.1215/S0012-7094-04-12512-6
- William Parry and Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573–591. MR 727704, DOI https://doi.org/10.2307/2006982
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- S. J. Patterson, The Selberg zeta-function of a Kleinian group, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR 993330
- S. J. Patterson and Peter A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106 (2001), no. 2, 321–390. Appendix A by Charles Epstein. MR 1813434, DOI https://doi.org/10.1215/S0012-7094-01-10624-8
- P. A. Perry, Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume, Geom. Funct. Anal. 11 (2001), no. 1, 132–141. MR 1829645, DOI https://doi.org/10.1007/PL00001668
- Mark Pollicott, Meromorphic extensions of generalised zeta functions, Invent. Math. 85 (1986), no. 1, 147–164. MR 842051, DOI https://doi.org/10.1007/BF01388795
- Mark Pollicott and Richard Sharp, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math. 120 (1998), no. 5, 1019–1042. MR 1646052
- Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96 (French, with English and French summaries). MR 2057305, DOI https://doi.org/10.24033/msmf.408
- Thomas Roblin, Comportement harmonique des densités conformes et frontière de Martin, Bull. Soc. Math. France 139 (2011), no. 1, 97–128 (French, with English and French summaries). MR 2815030, DOI https://doi.org/10.24033/bsmf.2602
- Julie Rowlett, Dynamics of asymptotically hyperbolic manifolds, Pacific J. Math. 242 (2009), no. 2, 377–397. MR 2546718, DOI https://doi.org/10.2140/pjm.2009.242.377
- Julie Rowlett, Errata to “Dynamics of asymptotically hyperbolic manifolds” [MR2546718], Pacific J. Math. 268 (2014), no. 2, 493–506. MR 3227445, DOI https://doi.org/10.2140/pjm.2014.268.493
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI https://doi.org/10.1090/S0002-9904-1967-11798-1
- Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24 (2011), no. 4, 1089–1120. MR 2776112, DOI https://doi.org/10.1088/0951-7715/24/4/005
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351. MR 882827
- Samuel Tapie, A variation formula for the topological entropy of convex-cocompact manifolds, Ergodic Theory Dynam. Systems 31 (2011), no. 6, 1849–1864. MR 2851678, DOI https://doi.org/10.1017/S0143385710000623
- N. Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press, Cambridge, England, 1967.
- S. T. Yau, Remarks on conformal transformations, J. Differential Geometry 8 (1973), 369–381. MR 339007
Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37D40, 58J50, 53C22, 53D25, 35P15.
Retrieve articles in all journals with MSC (2010): 37D40, 58J50, 53C22, 53D25, 35P15.
Additional Information
Julie Rowlett
Affiliation:
Max Planck Institut für Mathematik, Vivatgasse 7, D-53111 Bonn, Germany
Email:
rowlett@mpim-bonn.mpg.de
Pablo Suárez-Serrato
Affiliation:
Instituto de Matemáticas, Universidad Nacional Autonóma de México, Ciudad Universitaria, Coyoacán, 04510, México, D. F.
Email:
p.suarez-serrato@matem.unam.mx
Samuel Tapie
Affiliation:
Laboratoire Jean Leray, Université de Nantes, 2, rue de la Houssinière - BP 92208, F-44322 Nantes Cedex 3, France
Email:
samuel.tapie@univ-nantes.fr
Keywords:
Convex co-compact,
conformally compact,
negative curvature,
geodesic length spectrum,
topological entropy,
dynamics,
geodesic flow,
prime orbit theorem,
Laplacian,
pure point spectrum
Received by editor(s):
June 27, 2011
Received by editor(s) in revised form:
August 23, 2012
Published electronically:
November 24, 2014
Article copyright:
© Copyright 2014
American Mathematical Society