Dynamics and Zeta functions on conformally compact manifolds
HTML articles powered by AMS MathViewer
- by Julie Rowlett, Pablo Suárez-Serrato and Samuel Tapie PDF
- Trans. Amer. Math. Soc. 367 (2015), 2459-2486 Request permission
Abstract:
In this note, we study the dynamics and associated Zeta functions of conformally compact manifolds with variable negative sectional curvatures. We begin with a discussion of a larger class of manifolds known as convex co-compact manifolds with variable negative curvature. Applying results from dynamics on these spaces, we obtain optimal meromorphic extensions of weighted dynamical Zeta functions and asymptotic counting estimates for the number of weighted closed geodesics. A meromorphic extension of the standard dynamical Zeta function and the prime orbit theorem follow as corollaries. Finally, we investigate interactions between the dynamics and spectral theory of these spaces.References
- James W. Anderson and André C. Rocha, Analyticity of Hausdorff dimension of limit sets of Kleinian groups, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 349–364. MR 1469796
- Michael T. Anderson, Geometric aspects of the AdS/CFT correspondence, AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, 2005, pp. 1–31. MR 2160865, DOI 10.4171/013-1/1
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Eric Bahuaud, Intrinsic characterization for Lipschitz asymptotically hyperbolic metrics, Pacific J. Math. 239 (2009), no. 2, 231–249. MR 2457230, DOI 10.2140/pjm.2009.239.231
- David Borthwick and Peter A. Perry, Inverse scattering results for manifolds hyperbolic near infinity, J. Geom. Anal. 21 (2011), no. 2, 305–333. MR 2772075, DOI 10.1007/s12220-010-9149-9
- B. H. Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995), no. 1, 229–274. MR 1317633, DOI 10.1215/S0012-7094-95-07709-6
- Rufus Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429–460. MR 339281, DOI 10.2307/2373793
- Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. MR 0442989, DOI 10.1007/BFb0081279
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Gonzalo Contreras, Regularity of topological and metric entropy of hyperbolic flows, Math. Z. 210 (1992), no. 1, 97–111. MR 1161172, DOI 10.1007/BF02571785
- Françoise Dal’bo, Topologie du feuilletage fortement stable, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 981–993 (French, with English and French summaries). MR 1779902, DOI 10.5802/aif.1781
- J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), no. 1, 39–79. MR 405514, DOI 10.1007/BF01405172
- Jürgen Eichhorn, The essential spectrum of non-simply-connected open complete Riemannian manifolds, Ann. Global Anal. Geom. 2 (1984), no. 1, 1–18. MR 755207, DOI 10.1007/BF01871943
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. I, Ann. of Math. (2) 95 (1972), 492–510. MR 310926, DOI 10.2307/1970869
- Patrick Eberlein, Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc. 178 (1973), 57–82. MR 314084, DOI 10.1090/S0002-9947-1973-0314084-0
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- David Fried, The zeta functions of Ruelle and Selberg. I, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 4, 491–517. MR 875085, DOI 10.24033/asens.1515
- Colin Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129 (2005), no. 1, 1–37. MR 2153454, DOI 10.1215/S0012-7094-04-12911-2
- Colin Guillarmou and Frédéric Naud, Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds, Comm. Anal. Geom. 14 (2006), no. 5, 945–967. MR 2287151, DOI 10.4310/CAG.2006.v14.n5.a5
- L. Guillopé and M. Zworski, The wave trace for Riemann surfaces, Geom. Funct. Anal. 9 (1999), no. 6, 1156–1168. MR 1736931, DOI 10.1007/s000390050110
- Boris Hasselblatt, Horospheric foliations and relative pinching, J. Differential Geom. 39 (1994), no. 1, 57–63. MR 1258914
- Nicolai T. A. Haydn, Meromorphic extension of the zeta function for Axiom A flows, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 347–360. MR 1062762, DOI 10.1017/S0143385700005587
- Ernst Heintze and Hans-Christoph Im Hof, Geometry of horospheres, J. Differential Geometry 12 (1977), no. 4, 481–491 (1978). MR 512919
- Morris W. Hirsch and Charles C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975), 225–238. MR 368077
- Dmitry Jakobson, Iosif Polterovich, and John A. Toth, A lower bound for the remainder in Weyl’s law on negatively curved surfaces, Int. Math. Res. Not. IMRN 2 (2008), Art. ID rnm142, 38. MR 2418855, DOI 10.1093/imrn/rnm142
- A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581–597. MR 1022308, DOI 10.1007/BF01393838
- Wilhelm Klingenberg, Riemannian geometry, de Gruyter Studies in Mathematics, vol. 1, Walter de Gruyter & Co., Berlin-New York, 1982. MR 666697
- Peter D. Lax and Ralph S. Phillips, The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces, J. Functional Analysis 46 (1982), no. 3, 280–350. MR 661875, DOI 10.1016/0022-1236(82)90050-7
- A. Marden, Outer circles, Cambridge University Press, Cambridge, 2007. An introduction to hyperbolic 3-manifolds. MR 2355387, DOI 10.1017/CBO9780511618918
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), no. 2, 309–339. MR 961517
- Rafe Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds, Amer. J. Math. 113 (1991), no. 1, 25–45. MR 1087800, DOI 10.2307/2374820
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- Jean-Pierre Otal and Marc Peigné, Principe variationnel et groupes kleiniens, Duke Math. J. 125 (2004), no. 1, 15–44 (French, with English and French summaries). MR 2097356, DOI 10.1215/S0012-7094-04-12512-6
- William Parry and Mark Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows, Ann. of Math. (2) 118 (1983), no. 3, 573–591. MR 727704, DOI 10.2307/2006982
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- S. J. Patterson, The Selberg zeta-function of a Kleinian group, Number theory, trace formulas and discrete groups (Oslo, 1987) Academic Press, Boston, MA, 1989, pp. 409–441. MR 993330
- S. J. Patterson and Peter A. Perry, The divisor of Selberg’s zeta function for Kleinian groups, Duke Math. J. 106 (2001), no. 2, 321–390. Appendix A by Charles Epstein. MR 1813434, DOI 10.1215/S0012-7094-01-10624-8
- P. A. Perry, Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume, Geom. Funct. Anal. 11 (2001), no. 1, 132–141. MR 1829645, DOI 10.1007/PL00001668
- Mark Pollicott, Meromorphic extensions of generalised zeta functions, Invent. Math. 85 (1986), no. 1, 147–164. MR 842051, DOI 10.1007/BF01388795
- Mark Pollicott and Richard Sharp, Exponential error terms for growth functions on negatively curved surfaces, Amer. J. Math. 120 (1998), no. 5, 1019–1042. MR 1646052, DOI 10.1353/ajm.1998.0041
- Thomas Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96 (French, with English and French summaries). MR 2057305, DOI 10.24033/msmf.408
- Thomas Roblin, Comportement harmonique des densités conformes et frontière de Martin, Bull. Soc. Math. France 139 (2011), no. 1, 97–128 (French, with English and French summaries). MR 2815030, DOI 10.24033/bsmf.2602
- Julie Rowlett, Dynamics of asymptotically hyperbolic manifolds, Pacific J. Math. 242 (2009), no. 2, 377–397. MR 2546718, DOI 10.2140/pjm.2009.242.377
- Julie Rowlett, Errata to “Dynamics of asymptotically hyperbolic manifolds” [MR2546718], Pacific J. Math. 268 (2014), no. 2, 493–506. MR 3227445, DOI 10.2140/pjm.2014.268.493
- A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- Luchezar Stoyanov, Spectra of Ruelle transfer operators for axiom A flows, Nonlinearity 24 (2011), no. 4, 1089–1120. MR 2776112, DOI 10.1088/0951-7715/24/4/005
- Dennis Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 171–202. MR 556586, DOI 10.1007/BF02684773
- Dennis Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987), no. 3, 327–351. MR 882827
- Samuel Tapie, A variation formula for the topological entropy of convex-cocompact manifolds, Ergodic Theory Dynam. Systems 31 (2011), no. 6, 1849–1864. MR 2851678, DOI 10.1017/S0143385710000623
- N. Wiener, The Fourier integral and certain of its applications, Cambridge Univ. Press, Cambridge, England, 1967.
- S. T. Yau, Remarks on conformal transformations, J. Differential Geometry 8 (1973), 369–381. MR 339007
Additional Information
- Julie Rowlett
- Affiliation: Max Planck Institut für Mathematik, Vivatgasse 7, D-53111 Bonn, Germany
- Email: rowlett@mpim-bonn.mpg.de
- Pablo Suárez-Serrato
- Affiliation: Instituto de Matemáticas, Universidad Nacional Autonóma de México, Ciudad Universitaria, Coyoacán, 04510, México, D. F.
- Email: p.suarez-serrato@matem.unam.mx
- Samuel Tapie
- Affiliation: Laboratoire Jean Leray, Université de Nantes, 2, rue de la Houssinière - BP 92208, F-44322 Nantes Cedex 3, France
- Email: samuel.tapie@univ-nantes.fr
- Received by editor(s): June 27, 2011
- Received by editor(s) in revised form: August 23, 2012
- Published electronically: November 24, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 2459-2486
- MSC (2010): Primary 37D40, 58J50, 53C22, 53D25, 35P15
- DOI: https://doi.org/10.1090/S0002-9947-2014-05999-0
- MathSciNet review: 3301870