The space of almost complex 2-spheres in the 6-sphere
HTML articles powered by AMS MathViewer
- by Luis Fernández PDF
- Trans. Amer. Math. Soc. 367 (2015), 2437-2458 Request permission
Abstract:
The complex dimension of the space of linearly full almost complex 2-spheres of area $4\pi d$ in the round 6-sphere is calculated to be $d+8$. Explicit examples of these objects are constructed for every integer value of the degree, $d\ge 6$, $d\ne 7$. Furthermore, it is shown that when $d=6$ this space is isomorphic to the group $G_2({\mathbb C})$, and when $d=7$ this space is empty. We also show that the dimension of the space of nonlinearly full almost complex 2-spheres of area $4\pi d$ in the round 6-sphere is $2d+5$.References
- João Lucas Marquês Barbosa, On minimal immersions of $S^{2}$ into $S^{2m}$, Trans. Amer. Math. Soc. 210 (1975), 75–106. MR 375166, DOI 10.1090/S0002-9947-1975-0375166-2
- J. Bolton, W. M. Oxbury, L. Vrancken, and L. M. Woodward, Minimal immersions of $\textbf {R}\textrm {P}^2$ into $\textbf {C}\textrm {P}^n$, Global differential geometry and global analysis (Berlin, 1990) Lecture Notes in Math., vol. 1481, Springer, Berlin, 1991, pp. 18–27. MR 1178514, DOI 10.1007/BFb0083624
- J. Bolton and L. M. Woodward, Congruence theorems for harmonic maps from a Riemann surface into $\mathbf C\textrm {P}^n$ and $S^n$, J. London Math. Soc. (2) 45 (1992), no. 2, 363–376. MR 1171562, DOI 10.1112/jlms/s2-45.2.363
- J. Bolton and L. M. Woodward, The space of harmonic maps on $S^2$ into $S^n$, Geometry and global analysis (Sendai, 1993) Tohoku Univ., Sendai, 1993, pp. 165–173. MR 1361179
- J. Bolton, L. M. Woodward, and L. Vrancken, Minimal immersions of $S^2$ and $\textbf {R}\textrm {P}^2$ into $\textbf {C}\textrm {P}^n$ with few higher order singularities, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 93–101. MR 1131481, DOI 10.1017/S0305004100075186
- John Bolton, Gary R. Jensen, Marco Rigoli, and Lyndon M. Woodward, On conformal minimal immersions of $S^2$ into $\textbf {C}\textrm {P}^n$, Math. Ann. 279 (1988), no. 4, 599–620. MR 926423, DOI 10.1007/BF01458531
- John Bolton, Luc Vrancken, and Lyndon M. Woodward, On almost complex curves in the nearly Kähler $6$-sphere, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 407–427. MR 1315456, DOI 10.1093/qmath/45.4.407
- Robert L. Bryant, Submanifolds and special structures on the octonians, J. Differential Geometry 17 (1982), no. 2, 185–232. MR 664494
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294
- Quo-Shin Chi, Luis Fernández, and Hongyou Wu, Normalized potentials of minimal surfaces in spheres, Nagoya Math. J. 156 (1999), 187–214. MR 1727900, DOI 10.1017/S0027763000007133
- J. Eells and J. C. Wood, Harmonic maps from surfaces to complex projective spaces, Adv. in Math. 49 (1983), no. 3, 217–263. MR 716372, DOI 10.1016/0001-8708(83)90062-2
- Luis Fernández, On the moduli space of superminimal surfaces in spheres, Int. J. Math. Math. Sci. 44 (2003), 2803–2827. MR 2003790, DOI 10.1155/S0161171203112161
- Luis Fernández, The dimension of the space of harmonic 2-spheres in the 6-sphere, Bull. London Math. Soc. 38 (2006), no. 1, 156–162. MR 2201614, DOI 10.1112/S0024609305018205
- Luis Fernández, The dimension and structure of the space of harmonic 2-spheres in the $m$-sphere, Ann. of Math. (2) 175 (2012), no. 3, 1093–1125. MR 2912703, DOI 10.4007/annals.2012.175.3.3
- Tetsuzo Fukami and Shigeru Ishihara, Almost Hermitian structure on $S^6$, Tohoku Math. J. (2) 7 (1955), 151–156. MR 77988, DOI 10.2748/tmj/1178245052
- Mikio Furuta, Martin A. Guest, Motoko Kotani, and Yoshihiro Ohnita, On the fundamental group of the space of harmonic $2$-spheres in the $n$-sphere, Math. Z. 215 (1994), no. 4, 503–518. MR 1269487, DOI 10.1007/BF02571727
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523, DOI 10.1002/9781118032527
- Jun-ichi Hano, Conformal immersions of compact Riemann surfaces into the $2n$-sphere $(n\geq 2)$, Nagoya Math. J. 141 (1996), 79–105. MR 1383793, DOI 10.1017/S0027763000005535
- F. Reese Harvey, Spinors and calibrations, Perspectives in Mathematics, vol. 9, Academic Press, Inc., Boston, MA, 1990. MR 1045637
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726
- José Kenedy Martins, Superminimal surfaces in the 6-sphere, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 25–48. MR 3077633, DOI 10.1007/s00574-013-0002-1
- Marie-Louise Michelsohn, Surfaces minimales dans les sphères, Astérisque 154-155 (1987), 9, 115–130, 350 (1988) (French, with English summary). Théorie des variétés minimales et applications (Palaiseau, 1983–1984). MR 955062
- Hisao Nakagawa, On a certain minimal immersion of a Riemannian manifold into a sphere, Kodai Math. J. 3 (1980), no. 3, 321–340. MR 604477
- Kouei Sekigawa, Almost complex submanifolds of a $6$-dimensional sphere, Kodai Math. J. 6 (1983), no. 2, 174–185. MR 702939
- Jon G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Differential Geom. 27 (1988), no. 1, 161–178. MR 918462
Additional Information
- Luis Fernández
- Affiliation: Department of Mathematics and Computer Science, Bronx Community College of CUNY, 2155 University Avenue, Bronx, New York 10453
- Email: luis.fernandez01@bcc.cuny.edu, lmfernand@gmail.com
- Received by editor(s): July 29, 2012
- Published electronically: November 24, 2014
- Additional Notes: The author was partially supported by a PSC-CUNY grant.
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 2437-2458
- MSC (2010): Primary 58D10, 58E20; Secondary 32Q60
- DOI: https://doi.org/10.1090/S0002-9947-2014-06070-4
- MathSciNet review: 3301869