## Thick subcategories of the bounded derived category of a finite group

HTML articles powered by AMS MathViewer

- by Jon F. Carlson and Srikanth B. Iyengar PDF
- Trans. Amer. Math. Soc.
**367**(2015), 2703-2717 Request permission

## Abstract:

A new proof of the classification for tensor ideal thick subcategories of the bounded derived category, and the stable category, of modular representations of a finite group is obtained. The arguments apply more generally to yield a classification of thick subcategories of the bounded derived category of an artinian complete intersection ring. One of the salient features of this work is that it takes no recourse to infinite constructions, unlike previous proofs of these results.## References

- L. L. Avramov,
*Modules of finite virtual projective dimension*, Invent. Math.**96**(1989), no. 1, 71–101. MR**981738**, DOI 10.1007/BF01393971 - Luchezar L. Avramov, Ragnar-Olaf Buchweitz, Srikanth B. Iyengar, and Claudia Miller,
*Homology of perfect complexes*, Adv. Math.**223**(2010), no. 5, 1731–1781. MR**2592508**, DOI 10.1016/j.aim.2009.10.009 - Luchezar L. Avramov and Srikanth B. Iyengar,
*Cohomology over complete intersections via exterior algebras*, Triangulated categories, London Math. Soc. Lecture Note Ser., vol. 375, Cambridge Univ. Press, Cambridge, 2010, pp. 52–75. MR**2681707** - Luchezar L. Avramov and Srikanth B. Iyengar,
*Constructing modules with prescribed cohomological support*, Illinois J. Math.**51**(2007), no. 1, 1–20. MR**2346182** - L. L. Avramov and D. A. Jorgensen,
*Reverse homological algebra over some local rings*, in preparation. - D. J. Benson, Jon F. Carlson, and Jeremy Rickard,
*Thick subcategories of the stable module category*, Fund. Math.**153**(1997), no. 1, 59–80. MR**1450996**, DOI 10.4064/fm-153-1-59-80 - Dave Benson, Srikanth B. Iyengar, and Henning Krause,
*Stratifying triangulated categories*, J. Topol.**4**(2011), no. 3, 641–666. MR**2832572**, DOI 10.1112/jtopol/jtr017 - David J. Benson, Srikanth B. Iyengar, and Henning Krause,
*Stratifying modular representations of finite groups*, Ann. of Math. (2)**174**(2011), no. 3, 1643–1684. MR**2846489**, DOI 10.4007/annals.2011.174.3.6 - Petter Andreas Bergh,
*On support varieties for modules over complete intersections*, Proc. Amer. Math. Soc.**135**(2007), no. 12, 3795–3803. MR**2341929**, DOI 10.1090/S0002-9939-07-09009-0 - Winfried Bruns and Jürgen Herzog,
*Cohen-Macaulay rings*, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR**1251956** - Jon F. Carlson, Lisa Townsley, Luis Valeri-Elizondo, and Mucheng Zhang,
*Cohomology rings of finite groups*, Algebra and Applications, vol. 3, Kluwer Academic Publishers, Dordrecht, 2003. With an appendix: Calculations of cohomology rings of groups of order dividing 64 by Carlson, Valeri-Elizondo and Zhang. MR**2028960**, DOI 10.1007/978-94-017-0215-7 - Jon F. Carlson,
*Cohomology and induction from elementary abelian subgroups*, Q. J. Math.**51**(2000), no. 2, 169–181. MR**1765788**, DOI 10.1093/qjmath/51.2.169 - Eric M. Friedlander and Julia Pevtsova,
*$\Pi$-supports for modules for finite group schemes*, Duke Math. J.**139**(2007), no. 2, 317–368. MR**2352134**, DOI 10.1215/S0012-7094-07-13923-1 - Tor H. Gulliksen,
*A change of ring theorem with applications to Poincaré series and intersection multiplicity*, Math. Scand.**34**(1974), 167–183. MR**364232**, DOI 10.7146/math.scand.a-11518 - Dieter Happel,
*Triangulated categories in the representation theory of finite-dimensional algebras*, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR**935124**, DOI 10.1017/CBO9780511629228 - Michael J. Hopkins,
*Global methods in homotopy theory*, Homotopy theory (Durham, 1985) London Math. Soc. Lecture Note Ser., vol. 117, Cambridge Univ. Press, Cambridge, 1987, pp. 73–96. MR**932260** - Mark Hovey, John H. Palmieri, and Neil P. Strickland,
*Axiomatic stable homotopy theory*, Mem. Amer. Math. Soc.**128**(1997), no. 610, x+114. MR**1388895**, DOI 10.1090/memo/0610 - S. B. Iyengar,
*Thick subcategories and localizing subcategories of derived categories*, lectures at workshop “Algebraic triangulated categories and related topics,” RIMS, Kyoto, July 2009. http://www.mi.s.osakafu-u.ac.jp/ kiriko/seminar/09JulRIMS.html - Amnon Neeman,
*The chromatic tower for $D(R)$*, Topology**31**(1992), no. 3, 519–532. With an appendix by Marcel Bökstedt. MR**1174255**, DOI 10.1016/0040-9383(92)90047-L - Gunnar Sjödin,
*A set of generators for $\textrm {Ext}_{R}(k,k)$*, Math. Scand.**38**(1976), no. 2, 199–210. MR**422248**, DOI 10.7146/math.scand.a-11629 - Greg Stevenson,
*Subcategories of singularity categories via tensor actions*, Compos. Math.**150**(2014), no. 2, 229–272. MR**3177268**, DOI 10.1112/S0010437X1300746X - John Tate,
*Homology of Noetherian rings and local rings*, Illinois J. Math.**1**(1957), 14–27. MR**86072** - R. W. Thomason,
*The classification of triangulated subcategories*, Compositio Math.**105**(1997), no. 1, 1–27. MR**1436741**, DOI 10.1023/A:1017932514274

## Additional Information

**Jon F. Carlson**- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 45415
- Email: jfc@math.uga.edu
**Srikanth B. Iyengar**- Affiliation: Department of Mathematics, University of Nebraska, Lincoln, Nebraska 68588
- MR Author ID: 616284
- ORCID: 0000-0001-7597-7068
- Email: siyengar2@unl.edu
- Received by editor(s): February 1, 2012
- Received by editor(s) in revised form: March 5, 2013
- Published electronically: September 4, 2014
- Additional Notes: The research of the first author was partially supported by NSF grant DMS-1001102

The research of the second author was partially supported by NSF grant DMS-0903493 - © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**367**(2015), 2703-2717 - MSC (2010): Primary 20J06; Secondary 20C20, 13D09, 16E45
- DOI: https://doi.org/10.1090/S0002-9947-2014-06121-7
- MathSciNet review: 3301878