Asymptotics of the densities of the first passage time distributions for Bessel diffusions
HTML articles powered by AMS MathViewer
- by Kôhei Uchiyama PDF
- Trans. Amer. Math. Soc. 367 (2015), 2719-2742 Request permission
Abstract:
This paper concerns the first passage times to a point $a >0$, denoted by $\sigma _a$, of Bessel processes. We are interested in the case when the process starts at $x>a$ and we compute the densities of the distributions of $\sigma _a$ to obtain the exact asymptotic forms of them as $t\to \infty$ that are valid uniformly in $x>a$ for every order of the Bessel process.References
- T. Byczkowski and M. Ryznar, Hitting distributions of geometric Brownian motion, Studia Math. 173 (2006), no. 1, 19–38. MR 2204460, DOI 10.4064/sm173-1-2
- T. Byczkowski, J. Małecki, and M. Ryznar, Hitting times of Bessel processes, Potential Anal. 38 (2013), no. 3, 753–786. MR 3034599, DOI 10.1007/s11118-012-9296-7
- Z. Ciesielski and S. J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434–450. MR 143257, DOI 10.1090/S0002-9947-1962-0143257-8
- A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 0078494
- A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of integral transforms. Vol. I, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1954. Based, in part, on notes left by Harry Bateman. MR 0061695
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
- Alexander Grigor’yan and Laurent Saloff-Coste, Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures Appl. (9) 81 (2002), no. 2, 115–142. MR 1994606, DOI 10.1016/S0021-7824(01)01244-2
- R. K. Getoor and M. J. Sharpe, Excursions of Brownian motion and Bessel processes, Z. Wahrsch. Verw. Gebiete 47 (1979), no. 1, 83–106. MR 521534, DOI 10.1007/BF00533253
- Yuji Hamana and Hiroyuki Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5237–5257. MR 3074372, DOI 10.1090/S0002-9947-2013-05799-6
- Yuji Hamana and Hiroyuki Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Ind. 4B (2012), 91–95. MR 3072321
- Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
- John T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete 52 (1980), no. 3, 309–319. MR 576891, DOI 10.1007/BF00538895
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. Translated and edited by Richard A. Silverman. MR 0174795, DOI 10.1063/1.3047047
- Daniel Revuz and Marc Yor, Continuous martingales and Brownian motion, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR 1725357, DOI 10.1007/978-3-662-06400-9
- Frank Spitzer, Some theorems concerning $2$-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187–197. MR 104296, DOI 10.1090/S0002-9947-1958-0104296-5
- E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
- Kôhei Uchiyama, The first hitting time of a single point for random walks, Electron. J. Probab. 16 (2011), no. 71, 1960–2000. MR 2851052, DOI 10.1214/EJP.v16-931
- Kôhei Uchiyama, Asymptotic estimates of the distribution of Brownian hitting time of a disc, J. Theoret. Probab. 25 (2012), no. 2, 450–463. MR 2914437, DOI 10.1007/s10959-010-0305-8
- Kôhei Uchiyama, The expected area of the Wiener sausage swept by a disc, Stochastic Process. Appl. 123 (2013), no. 1, 191–211. MR 2988115, DOI 10.1016/j.spa.2012.09.005
- K. Uchiyama, The expected volume of Wiener sausage for Brownian bridge joining the origin to a point outside a parabolic region, RIMS Kôkyûroku (2013).
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- Neil A. Watson, Introduction to heat potential theory, Mathematical Surveys and Monographs, vol. 182, American Mathematical Society, Providence, RI, 2012. MR 2907452, DOI 10.1090/surv/182
Additional Information
- Kôhei Uchiyama
- Affiliation: Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro Tokyo 152-8551, Japan
- Email: uchiyama@math.titech.ac.jp
- Received by editor(s): August 3, 2012
- Received by editor(s) in revised form: March 11, 2013
- Published electronically: September 4, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 2719-2742
- MSC (2010): Primary 60J65; Secondary 60J60
- DOI: https://doi.org/10.1090/S0002-9947-2014-06155-2
- MathSciNet review: 3301879