Strichartz estimates for the Schrödinger equation for the sublaplacian on complex spheres
HTML articles powered by AMS MathViewer
- by Valentina Casarino and Marco M. Peloso PDF
- Trans. Amer. Math. Soc. 367 (2015), 2631-2664 Request permission
Abstract:
In this paper we consider the sublaplacian $\mathcal L$ on the unit complex sphere $S^{2n+1}\subset {\mathbf {C}}^{n+1}$, equipped with its natural CR structure, and derive Strichartz estimates with fractional loss of derivatives for the solutions of the free Schrödinger equation associated with $\mathcal L$. Our results are stated in terms of certain Sobolev-type spaces that measure the regularity of functions on $S^{2n+1}$ differently according to their spectral localization. Stronger conclusions are obtained for particular classes of solutions, corresponding to initial data whose spectrum is contained in a proper cone of ${\mathbf {N}}^2$.References
- Hajer Bahouri and Jean-Yves Chemin, Équations d’ondes quasilinéaires et estimations de Strichartz, Amer. J. Math. 121 (1999), no. 6, 1337–1377 (French, with French summary). MR 1719798, DOI 10.1353/ajm.1999.0038
- Hajer Bahouri, Patrick Gérard, and Chao-Jiang Xu, Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math. 82 (2000), 93–118 (French, with English summary). MR 1799659, DOI 10.1007/BF02791223
- Fabrice Baudoin and Jing Wang, The subelliptic heat kernel on the CR sphere, Math. Z. 275 (2013), no. 1-2, 135–150. MR 3101801, DOI 10.1007/s00209-012-1127-4
- Matthew D. Blair, Hart F. Smith, and Christopher D. Sogge, On Strichartz estimates for Schrödinger operators in compact manifolds with boundary, Proc. Amer. Math. Soc. 136 (2008), no. 1, 247–256. MR 2350410, DOI 10.1090/S0002-9939-07-09114-9
- Matthew D. Blair, Hart F. Smith, and Chris D. Sogge, Strichartz estimates and the nonlinear Schrödinger equation on manifolds with boundary, Math. Ann. 354 (2012), no. 4, 1397–1430. MR 2993000, DOI 10.1007/s00208-011-0772-y
- Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, DOI 10.1090/S0002-9947-1973-0338697-5
- Jean-Marc Bouclet, Littlewood-Paley decompositions on manifolds with ends, Bull. Soc. Math. France 138 (2010), no. 1, 1–37 (English, with English and French summaries). MR 2638890, DOI 10.24033/bsmf.2584
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107–156. MR 1209299, DOI 10.1007/BF01896020
- J. Bourgain, Exponential sums and nonlinear Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 157–178. MR 1209300, DOI 10.1007/BF01896021
- Thomas P. Branson, Luigi Fontana, and Carlo Morpurgo, Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere, Ann. of Math. (2) 177 (2013), no. 1, 1–52. MR 2999037, DOI 10.4007/annals.2013.177.1.1
- Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, The Schrödinger equation on a compact manifold: Strichartz estimates and applications, Journées “Équations aux Dérivées Partielles” (Plestin-les-Grèves, 2001) Univ. Nantes, Nantes, 2001, pp. Exp. No. V, 18 (English, with English and French summaries). MR 1843406
- N. Burq, P. Gérard, and N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), no. 3, 569–605. MR 2058384, DOI 10.1353/ajm.2004.0016
- N. Burq, P. Gérard, and N. Tzvetkov, Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), no. 1, 187–223 (English, with English and French summaries). MR 2142336, DOI 10.1007/s00222-004-0388-x
- Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov, Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 255–301 (English, with English and French summaries). MR 2144988, DOI 10.1016/j.ansens.2004.11.003
- Valentina Casarino, Norms of complex harmonic projection operators, Canad. J. Math. 55 (2003), no. 6, 1134–1154. MR 2016243, DOI 10.4153/CJM-2003-045-6
- Valentina Casarino, Two-parameter estimates for joint spectral projections on complex spheres, Math. Z. 261 (2009), no. 2, 245–259. MR 2457298, DOI 10.1007/s00209-008-0323-8
- Valentina Casarino and Paolo Ciatti, Transferring $L^p$ eigenfunction bounds from $S^{2n+1}$ to $h^n$, Studia Math. 194 (2009), no. 1, 23–42. MR 2520038, DOI 10.4064/sm194-1-2
- Valentina Casarino and Marco M. Peloso, $L^p$-summability of Riesz means for the sublaplacian on complex spheres, J. Lond. Math. Soc. (2) 83 (2011), no. 1, 137–152. MR 2763948, DOI 10.1112/jlms/jdq067
- Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. 14 (1990), no. 10, 807–836. MR 1055532, DOI 10.1016/0362-546X(90)90023-A
- Jean-Yves Chemin and Chao-Jian Xu, Inclusions de Sobolev en calcul de Weyl-Hörmander et champs de vecteurs sous-elliptiques, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 6, 719–751 (French, with English and French summaries). MR 1476294, DOI 10.1016/S0012-9593(97)89937-5
- Michael G. Cowling, Oldrich Klima, and Adam Sikora, Spectral multipliers for the Kohn sublaplacian on the sphere in $\Bbb C^n$, Trans. Amer. Math. Soc. 363 (2011), no. 2, 611–631. MR 2728580, DOI 10.1090/S0002-9947-2010-04920-7
- A. Fitouhi and M. M. Hamza, A uniform expansion for the eigenfunction of a singular second-order differential operator, SIAM J. Math. Anal. 21 (1990), no. 6, 1619–1632. MR 1075594, DOI 10.1137/0521088
- G. B. Folland, The tangential Cauchy-Riemann complex on spheres, Trans. Amer. Math. Soc. 171 (1972), 83–133. MR 309156, DOI 10.1090/S0002-9947-1972-0309156-X
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- G. B. Folland, Spherical harmonic expansion of the Poisson-Szegő kernel for the ball, Proc. Amer. Math. Soc. 47 (1975), 401–408. MR 370044, DOI 10.1090/S0002-9939-1975-0370044-2
- G. B. Folland and E. M. Stein, Estimates for the $\bar \partial _{b}$ complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. MR 367477, DOI 10.1002/cpa.3160270403
- Daryl Geller, The Laplacian and the Kohn Laplacian for the sphere, J. Differential Geometry 15 (1980), no. 3, 417–435 (1981). MR 620896
- Patrick Gérard and Sandrine Grellier, The cubic Szegő equation, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 5, 761–810 (English, with English and French summaries). MR 2721876, DOI 10.24033/asens.2133
- Patrick Gérard and Sandrine Grellier, Invariant tori for the cubic Szegö equation, Invent. Math. 187 (2012), no. 3, 707–754. MR 2944951, DOI 10.1007/s00222-011-0342-7
- J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50–68. MR 1351643, DOI 10.1006/jfan.1995.1119
- David Jerison and John M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), no. 2, 167–197. MR 880182
- Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955–980. MR 1646048, DOI 10.1353/ajm.1998.0039
- John M. Lee, The Fefferman metric and pseudo-Hermitian invariants, Trans. Amer. Math. Soc. 296 (1986), no. 1, 411–429. MR 837820, DOI 10.1090/S0002-9947-1986-0837820-2
- D. Müller, M. M. Peloso, and F. Ricci, Analysis of the Hodge Laplacian on the Heisenberg group, Mem. Amer. Math. Soc., to appear, ArXiv:1206.4540.
- A. Nagel, Introduction to analysis on Carnot-Carathéodory spaces, Notes for the Summer School in Harmonic Analysis, Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003), available on www.math.wisc.edu/~nagel/Combined.pdf.
- Fulvio Ricci and Jérémie Unterberger, Solvability of invariant sublaplacians on spheres and group contraction, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 27–42 (2002) (English, with English and Italian summaries). MR 1898446
- Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192
- Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705–714. MR 512086
- Gabor Szegö, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, New York, 1939. MR 0000077, DOI 10.1090/coll/023
- Daniel Tataru, Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math. 122 (2000), no. 2, 349–376. MR 1749052, DOI 10.1353/ajm.2000.0014
- N. Ja. Vilenkin and A. U. Klimyk, Representation of Lie groups and special functions. Vol. 2, Mathematics and its Applications (Soviet Series), vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1993. Class I representations, special functions, and integral transforms; Translated from the Russian by V. A. Groza and A. A. Groza. MR 1220225, DOI 10.1007/978-94-017-2883-6
Additional Information
- Valentina Casarino
- Affiliation: DTG, Università degli Studi di Padova, Stradella san Nicola 3, I-36100 Vicenza, Italy
- Email: valentina.casarino@unipd.it
- Marco M. Peloso
- Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via C. Saldini 50, I-20133 Milano, Italy
- Email: marco.peloso@unimi.it
- Received by editor(s): January 25, 2013
- Published electronically: July 24, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 2631-2664
- MSC (2010): Primary 35Q41; Secondary 43A85, 35B65, 33C55
- DOI: https://doi.org/10.1090/S0002-9947-2014-06162-X
- MathSciNet review: 3301876