A note on the cohomology of the Langlands group
HTML articles powered by AMS MathViewer
- by Edward S.T. Fan; with an appendix by M. Flach PDF
- Trans. Amer. Math. Soc. 367 (2015), 2905-2920 Request permission
Abstract:
We begin with a comparison of various cohomology theories for topological groups. Using the continuity result for Moore cohomology, we establish a Hochschild-Serre spectral sequence for a slightly larger class of groups. We use these properties to compute the cohomology of the Langlands group of a totally imaginary field. The appendix answers a question raised by Flach concerning the cohomological dimension of the group $\mathbb {R}$.References
- James Arthur, A note on the automorphic Langlands group, Canad. Math. Bull. 45 (2002), no. 4, 466–482. Dedicated to Robert V. Moody. MR 1941222, DOI 10.4153/CMB-2002-049-1
- T. Austin, Continuity properties of Moore cohomology, Preprint, available online at, arXiv.org:1004.4937, 2010.
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- N. Bourbaki, General Topology, Springer-Verlag, Berlin (1989).
- M. Flach, Cohomology of topological groups with applications to the Weil group, Compos. Math. 144 (2008), no. 3, 633–656. MR 2422342, DOI 10.1112/S0010437X07003338
- R. Gonzales, Localization in equivariant cohomology and GKM theory, http://www.math. uwo.ca/ rgonzal3/qfy.pdf.
- A. Grothendieck, M. Artin, J. L. Verdier, Theorie des topos et cohomologie etale des schemas (SGA4), Lecture Notes in Math. Soc. 269, 270, 271, Springer, Berlin (1972).
- Karl H. Hofmann and Sidney A. Morris, The Lie theory of connected pro-Lie groups, EMS Tracts in Mathematics, vol. 2, European Mathematical Society (EMS), Zürich, 2007. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups. MR 2337107, DOI 10.4171/032
- Karl H. Hofmann and Paul S. Mostert, Cohomology theories for compact abelian groups, Springer-Verlag, New York-Heidelberg; VEB Deutscher Verlag der Wissenschaften, Berlin, 1973. With an appendix by Eric C. Nummela. MR 0372113, DOI 10.1007/978-3-642-80670-4
- Stephen Lichtenbaum, The Weil-étale topology for number rings, Ann. of Math. (2) 170 (2009), no. 2, 657–683. MR 2552104, DOI 10.4007/annals.2009.170.657
- Saunders Mac Lane and Ieke Moerdijk, Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, 1994. A first introduction to topos theory; Corrected reprint of the 1992 edition. MR 1300636, DOI 10.1007/978-1-4612-0927-0
- Calvin C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–63; ibid. 113 (1964), 64–86. MR 171880, DOI 10.1090/S0002-9947-1964-0171880-5
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Paul S. Mostert, Local cross sections in locally compact groups, Proc. Amer. Math. Soc. 4 (1953), 645–649. MR 56614, DOI 10.1090/S0002-9939-1953-0056614-5
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
- John F. Price, Lie groups and compact groups, London Mathematical Society Lecture Note Series, No. 25, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0450449, DOI 10.1017/CBO9780511600715
- Markus Stroppel, Locally compact groups, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006. MR 2226087, DOI 10.4171/016
- David Wigner, Algebraic cohomology of topological groups, Trans. Amer. Math. Soc. 178 (1973), 83–93. MR 338132, DOI 10.1090/S0002-9947-1973-0338132-7
Additional Information
- Edward S.T. Fan
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- Email: sfan@caltech.edu
- M. Flach
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
- Received by editor(s): September 3, 2012
- Received by editor(s) in revised form: June 12, 2013
- Published electronically: February 25, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc. 367 (2015), 2905-2920
- MSC (2010): Primary 11F75, 14F20; Secondary 20J06, 22A99
- DOI: https://doi.org/10.1090/S0002-9947-2014-06230-2
- MathSciNet review: 3301886