KO-rings of full flag varieties
HTML articles powered by AMS MathViewer
- by Marcus Zibrowius PDF
- Trans. Amer. Math. Soc. 367 (2015), 2997-3016 Request permission
Abstract:
We present type-independent computations of the $\mathrm {KO}$-groups of full flag varieties, i.e. of quotient spaces $G/T$ of compact Lie groups by their maximal tori. Our main tool is the identification of the Witt ring, a quotient of the $\mathrm {KO}$-ring, of these varieties with the Tate cohomology of their complex $\mathrm {K}$-ring. The computations show that the Witt ring is an exterior algebra whose generators are determined by representations of $G$.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- L. Astey, A. Bahri, M. Bendersky, F. R. Cohen, D. M. Davis, S. Gitler, M. Mahowald, N. Ray, and R. Wood, The $KO^*$-rings of $BT^m$, the Davis-Januszkiewicz spaces and certain toric manifolds, J. Pure Appl. Algebra 218 (2014), no. 2, 303–320. MR 3120631, DOI 10.1016/j.jpaa.2013.06.001
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- Paul Balmer, Triangular Witt groups. I. The 12-term localization exact sequence, $K$-Theory 19 (2000), no. 4, 311–363. MR 1763933, DOI 10.1023/A:1007844609552
- Paul Balmer and Baptiste Calmès, Witt groups of Grassmann varieties, J. Algebraic Geom. 21 (2012), no. 4, 601–642. MR 2957690, DOI 10.1090/S1056-3911-2012-00613-4
- Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629, DOI 10.1007/978-3-540-89394-3
- A. K. Bousfield, A classification of $K$-local spectra, J. Pure Appl. Algebra 66 (1990), no. 2, 121–163. MR 1075335, DOI 10.1016/0022-4049(90)90082-S
- A. K. Bousfield, On the 2-primary $v_1$-periodic homotopy groups of spaces, Topology 44 (2005), no. 2, 381–413. MR 2114954, DOI 10.1016/j.top.2004.10.003
- Robert R. Bruner and J. P. C. Greenlees, Connective real $K$-theory of finite groups, Mathematical Surveys and Monographs, vol. 169, American Mathematical Society, Providence, RI, 2010. MR 2723113, DOI 10.1090/surv/169
- Donald M. Davis, Representation types and 2-primary homotopy groups of certain compact Lie groups, Homology Homotopy Appl. 5 (2003), no. 1, 297–324. MR 2006403, DOI 10.4310/HHA.2003.v5.n1.a13
- Michikazu Fujii, $K_{O}$-groups of projective spaces, Osaka Math. J. 4 (1967), 141–149. MR 219060
- Luke Hodgkin, The equivariant Künneth theorem in $K$-theory, Topics in $K$-theory. Two independent contributions, Lecture Notes in Math., Vol. 496, Springer, Berlin, 1975, pp. 1–101. MR 0478156
- S. G. Hoggar, On $\textrm {KO}$ theory of Grassmannians, Quart. J. Math. Oxford Ser. (2) 20 (1969), 447–463. MR 254841, DOI 10.1093/qmath/20.1.447
- Daisuke Kishimoto, Akira Kono, and Akihiro Ohsita, $K\textrm {O}$-theory of flag manifolds, J. Math. Kyoto Univ. 44 (2004), no. 1, 217–227. MR 2062716, DOI 10.1215/kjm/1250283591
- Daisuke Kishimoto and Akihiro Ohsita, $KO$-theory of exceptional flag manifolds, Kyoto J. Math. 53 (2013), no. 3, 673–692. MR 3102565, DOI 10.1215/21562261-2265923
- Akira Kono and Shin-ichiro Hara, $K\textrm {O}$-theory of Hermitian symmetric spaces, Hokkaido Math. J. 21 (1992), no. 1, 103–116. MR 1153756, DOI 10.14492/hokmj/1381413257
- Akira Kono and Shin-ichiro Hara, $K\textrm {O}$-theory of complex Grassmannians, J. Math. Kyoto Univ. 31 (1991), no. 3, 827–833. MR 1127102, DOI 10.1215/kjm/1250519732
- J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. MR 1413302, DOI 10.1090/cbms/091
- Alexander Nenashev, On the Witt groups of projective bundles and split quadrics: geometric reasoning, J. K-Theory 3 (2009), no. 3, 533–546. MR 2507729, DOI 10.1017/is008007001jkt050
- I. A. Panin, On the algebraic $K$-theory of twisted flag varieties, $K$-Theory 8 (1994), no. 6, 541–585. MR 1326751, DOI 10.1007/BF00961020
- Harsh V. Pittie, Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199–203. MR 290402, DOI 10.1016/0040-9383(72)90007-9
- Graeme Segal, Equivariant $K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129–151. MR 234452, DOI 10.1007/BF02684593
- Jean-Pierre Serre, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d’après Armand Borel et André Weil), Séminaire Bourbaki, Vol. 2, Soc. Math. France, Paris, 1995, pp. Exp. No. 100, 447–454 (French). MR 1609256
- Robert Steinberg, On a theorem of Pittie, Topology 14 (1975), 173–177. MR 372897, DOI 10.1016/0040-9383(75)90025-7
- Charles Walter, Grothendieck-Witt groups of triangulated categories (2003), available at www.math.uiuc.edu/K-theory/0643/.
- Charles Walter, Grothendieck-Witt groups of projective bundles (2003), available at www.math.uiuc.edu/K-theory/0644/.
- Nobuaki Yagita, Witt groups of algebraic groups, Publ. Res. Inst. Math. Sci. 50 (2014), no. 1, 113–151. MR 3167581, DOI 10.4171/PRIMS/126
- Marcus Zibrowius, Witt groups of complex cellular varieties, Doc. Math. 16 (2011), 465–511. MR 2823367
- Marcus Zibrowius, Twisted Witt groups of flag varieties, Journal of K-theory. Published online April 17, 2014. DOI 10.1017/is014003028jkt260.
Additional Information
- Marcus Zibrowius
- Affiliation: Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
- MR Author ID: 946630
- Email: marcus.zibrowius@cantab.net
- Received by editor(s): May 29, 2013
- Received by editor(s) in revised form: October 29, 2013
- Published electronically: July 24, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 2997-3016
- MSC (2010): Primary 55N15, 19L99
- DOI: https://doi.org/10.1090/S0002-9947-2014-06318-6
- MathSciNet review: 3301890