## Limits of positive flat bivariate moment matrices

HTML articles powered by AMS MathViewer

- by Lawrence A. Fialkow PDF
- Trans. Amer. Math. Soc.
**367**(2015), 2665-2702 Request permission

## Abstract:

The bivariate moment problem for a sequence $\beta \equiv \beta ^{(6)}$ of degree $6$ remains unsolved, but we prove that if the associated $10 \times 10$ moment matrix $M_{3}(\beta )$ satisfies $M_{3}\succeq 0$ and $rank~M_{3}\le 6$, then $\beta$ admits a sequence of*approximate*representing measures, and $\beta ^{(5)}$ has a representing measure. More generally, let $\overline {\mathcal {F}_{d}}$ denote the closure of the positive flat moment matrices of degree $2d$ in $n$ variables. Each matrix in $\overline {\mathcal {F}_{d}}$ admits computable approximate representing measures, and in 2013, Jiawang Nie and the author began to study concrete conditions for membership in this class. Let $\beta \equiv \beta ^{(2d)}=\{\beta _{i}\}_{ i\in \mathbb {Z}_{+}^{n},|i| \leq 2d }$, $\beta _{0}>0$, denote a real $n$-dimensional sequence of degree $2d$. If the corresponding moment matrix $M_{d}\equiv M_{d}(\beta )$ is the limit of a sequence of positive

*flat*moment matrices $\{M_{d}^{(k)}\}$, i.e., $M_{d}^{(k)}\succeq 0$ and $rank~M_{d}^{(k)} = rank~M_{d-1}^{(k)}$, then i) $M_{d}\succeq 0$, ii) $rank~M_{d} \le \rho _{d-1} \equiv dim~\mathbb {R}[x_{1},\ldots ,x_{n}]_{d-1}$, and iii) $\beta ^{(2d-1)}$ admits a representing measure. We extend our earlier results by proving, conversely, that for $n=2$, if $M_{d}$ satisfies certain positivity and rank conditions related to i)-iii), then $M_{d}$ is the limit of positive flat moment matrices.

## References

- N. I. Akhiezer,
*The classical moment problem and some related questions in analysis*, Hafner Publishing Co., New York, 1965. Translated by N. Kemmer. MR**0184042** - Christian Bayer and Josef Teichmann,
*The proof of Tchakaloff’s theorem*, Proc. Amer. Math. Soc.**134**(2006), no. 10, 3035–3040. MR**2231629**, DOI 10.1090/S0002-9939-06-08249-9 - Sterling K. Berberian,
*Lectures in functional analysis and operator theory*, Graduate Texts in Mathematics, No. 15, Springer-Verlag, New York-Heidelberg, 1974. MR**0417727**, DOI 10.1007/978-1-4757-4090-5 - Grigoriy Blekherman,
*Positive Gorenstein ideals*, Proc. Amer. Math. Soc.**143**(2015), no. 1, 69–86. MR**3272733**, DOI 10.1090/S0002-9939-2014-12253-2 - John B. Conway,
*A course in functional analysis*, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR**1070713** - Raúl E. Curto and Lawrence A. Fialkow,
*Recursiveness, positivity, and truncated moment problems*, Houston J. Math.**17**(1991), no. 4, 603–635. MR**1147276** - Raúl E. Curto and Lawrence A. Fialkow,
*Solution of the truncated complex moment problem for flat data*, Mem. Amer. Math. Soc.**119**(1996), no. 568, x+52. MR**1303090**, DOI 10.1090/memo/0568 - Raúl E. Curto and Lawrence A. Fialkow,
*Flat extensions of positive moment matrices: relations in analytic or conjugate terms*, Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 59–82. MR**1639649** - Raúl E. Curto and Lawrence A. Fialkow,
*Flat extensions of positive moment matrices: recursively generated relations*, Mem. Amer. Math. Soc.**136**(1998), no. 648, x+56. MR**1445490**, DOI 10.1090/memo/0648 - Raúl E. Curto and Lawrence A. Fialkow,
*Solution of the singular quartic moment problem*, J. Operator Theory**48**(2002), no. 2, 315–354. MR**1938799** - Raúl E. Curto and Lawrence A. Fialkow,
*Solution of the truncated parabolic moment problem*, Integral Equations Operator Theory**50**(2004), no. 2, 169–196. MR**2099788**, DOI 10.1007/s00020-003-1275-3 - Raúl E. Curto and Lawrence A. Fialkow,
*Truncated $K$-moment problems in several variables*, J. Operator Theory**54**(2005), no. 1, 189–226. MR**2168867** - Raúl E. Curto and Lawrence A. Fialkow,
*Solution of the truncated hyperbolic moment problem*, Integral Equations Operator Theory**52**(2005), no. 2, 181–218. MR**2216081**, DOI 10.1007/s00020-004-1340-6 - Raúl E. Curto and Lawrence A. Fialkow,
*An analogue of the Riesz-Haviland theorem for the truncated moment problem*, J. Funct. Anal.**255**(2008), no. 10, 2709–2731. MR**2464189**, DOI 10.1016/j.jfa.2008.09.003 - Raúl E. Curto and Lawrence A. Fialkow,
*Recursively determined representing measures for bivariate truncated moment sequences*, J. Operator Theory**70**(2013), no. 2, 401–436. MR**3138363**, DOI 10.7900/jot.2011sep06.1943 - Chirakkal Easwaran and Lawrence Fialkow,
*Positive linear functionals without representing measures*, Oper. Matrices**5**(2011), no. 3, 425–434. MR**2858497**, DOI 10.7153/oam-05-30 - Lawrence A. Fialkow,
*Solution of the truncated moment problem with variety $y=x^3$*, Trans. Amer. Math. Soc.**363**(2011), no. 6, 3133–3165. MR**2775801**, DOI 10.1090/S0002-9947-2011-05262-1 - Lawrence Fialkow and Jiawang Nie,
*Positivity of Riesz functionals and solutions of quadratic and quartic moment problems*, J. Funct. Anal.**258**(2010), no. 1, 328–356. MR**2557966**, DOI 10.1016/j.jfa.2009.09.015 - Lawrence Fialkow and Jiawang Nie,
*On the closure of positive flat moment matrices*, J. Operator Theory**69**(2013), no. 1, 257–277. MR**3029497**, DOI 10.7900/jot.2010may11.1890 - Lawrence Fialkow and Jiawang Nie,
*The truncated moment problem via homogenization and flat extensions*, J. Funct. Anal.**263**(2012), no. 6, 1682–1700. MR**2948227**, DOI 10.1016/j.jfa.2012.06.004 - E. K. Haviland,
*On the Momentum Problem for Distribution Functions in More Than One Dimension. II*, Amer. J. Math.**58**(1936), no. 1, 164–168. MR**1507139**, DOI 10.2307/2371063 - M. G. Kreĭn and A. A. Nudel′man,
*The Markov moment problem and extremal problems*, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR**0458081**, DOI 10.1090/mmono/050 - J. William Helton and Jiawang Nie,
*A semidefinite approach for truncated $K$-moment problems*, Found. Comput. Math.**12**(2012), no. 6, 851–881. MR**2989475**, DOI 10.1007/s10208-012-9132-x - Didier Henrion and Jean-Bernard Lasserre,
*GloptiPoly: global optimization over polynomials with Matlab and SeDuMi*, ACM Trans. Math. Software**29**(2003), no. 2, 165–194. MR**2000881**, DOI 10.1145/779359.779363 - Domingo A. Herrero,
*Approximation of Hilbert space operators. Vol. 1*, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR**1088255** - Jean B. Lasserre,
*Global optimization with polynomials and the problem of moments*, SIAM J. Optim.**11**(2000/01), no. 3, 796–817. MR**1814045**, DOI 10.1137/S1052623400366802 - Monique Laurent,
*Sums of squares, moment matrices and optimization over polynomials*, Emerging applications of algebraic geometry, IMA Vol. Math. Appl., vol. 149, Springer, New York, 2009, pp. 157–270. MR**2500468**, DOI 10.1007/978-0-387-09686-5_{7} - Bruce Reznick,
*Some concrete aspects of Hilbert’s 17th Problem*, Real algebraic geometry and ordered structures (Baton Rouge, LA, 1996) Contemp. Math., vol. 253, Amer. Math. Soc., Providence, RI, 2000, pp. 251–272. MR**1747589**, DOI 10.1090/conm/253/03936 - M. Riesz, Sur le problème des moments, Troisième Note,
*Arkiv für Matematik, Astronomi och Fysik***17**(1923), 1-52. - S. L. Salas and E. Hille,
*Calculus: One and several variables*, Fourth Edition, John Wiley and Sons, 1982. - Konrad Schmüdgen,
*An example of a positive polynomial which is not a sum of squares of polynomials. A positive, but not strongly positive functional*, Math. Nachr.**88**(1979), 385–390. MR**543417**, DOI 10.1002/mana.19790880130 - Konrad Schmüdgen,
*The $K$-moment problem for compact semi-algebraic sets*, Math. Ann.**289**(1991), no. 2, 203–206. MR**1092173**, DOI 10.1007/BF01446568 - Vladimir Tchakaloff,
*Formules de cubatures mécaniques à coefficients non négatifs*, Bull. Sci. Math. (2)**81**(1957), 123–134 (French). MR**94632**

## Additional Information

**Lawrence A. Fialkow**- Affiliation: Department of Computer Science, State University of New York, New Paltz, New York 12561
- Email: fialkowl@newpaltz.edu
- Received by editor(s): February 10, 2013
- Published electronically: December 3, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**367**(2015), 2665-2702 - MSC (2010): Primary 47A57, 44A60, 42A70, 30E05; Secondary 15A57, 15-04, 47A20
- DOI: https://doi.org/10.1090/S0002-9947-2014-06393-9
- MathSciNet review: 3301877