Non-self-adjoint graphs
HTML articles powered by AMS MathViewer
- by Amru Hussein, David Krejčiřík and Petr Siegl PDF
- Trans. Amer. Math. Soc. 367 (2015), 2921-2957 Request permission
Abstract:
On finite metric graphs we consider Laplace operators, subject to various classes of non-self-adjoint boundary conditions imposed at graph vertices. We investigate spectral properties, existence of a Riesz basis of projectors and similarity transforms to self-adjoint Laplacians. Among other things, we describe a simple way to relate the similarity transforms between Laplacians on certain graphs with elementary similarity transforms between matrices defining the boundary conditions.References
- M. S. Agranovich, On series in root vectors of operators defined by forms with a selfadjoint principal part, Funktsional. Anal. i Prilozhen. 28 (1994), no. 3, 1–21, 95 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 28 (1994), no. 3, 151–167. MR 1308388, DOI 10.1007/BF01078449
- Sergio Albeverio, Shao-Ming Fei, and Pavel Kurasov, Point interactions: $\scr {PT}$-Hermiticity and reality of the spectrum, Lett. Math. Phys. 59 (2002), no. 3, 227–242. MR 1904984, DOI 10.1023/A:1015559117837
- S. Albeverio and S. Kuzhel, One-dimensional Schrödinger operators with $\scr P$-symmetric zero-range potentials, J. Phys. A 38 (2005), no. 22, 4975–4988. MR 2148637, DOI 10.1088/0305-4470/38/22/019
- M. Astudillo. Pseudo-Hermitian Laplace operators on star-graphs: real spectrum and self-adjointness. Master thesis, Lund University, 2008.
- Carl M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), no. 6, 947–1018. MR 2331294, DOI 10.1088/0034-4885/70/6/R03
- Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208, DOI 10.1090/surv/186
- George D. Birkhoff, On the asymptotic character of the solutions of certain linear differential equations containing a parameter, Trans. Amer. Math. Soc. 9 (1908), no. 2, 219–231. MR 1500810, DOI 10.1090/S0002-9947-1908-1500810-1
- George D. Birkhoff, Boundary value and expansion problems of ordinary linear differential equations, Trans. Amer. Math. Soc. 9 (1908), no. 4, 373–395. MR 1500818, DOI 10.1090/S0002-9947-1908-1500818-6
- Jiří Blank, Pavel Exner, and Miloslav Havlíček, Hilbert space operators in quantum physics, 2nd ed., Theoretical and Mathematical Physics, Springer, New York; AIP Press, New York, 2008. MR 2458485
- Jens Bolte and Sebastian Endres, The trace formula for quantum graphs with general self adjoint boundary conditions, Ann. Henri Poincaré 10 (2009), no. 1, 189–223. MR 2496307, DOI 10.1007/s00023-009-0399-7
- Denis Borisov and David Krejčiřík, $\scr P\scr T$-symmetric waveguides, Integral Equations Operator Theory 62 (2008), no. 4, 489–515. MR 2470121, DOI 10.1007/s00020-008-1634-1
- Jan A. van Casteren, Operators similar to unitary or selfadjoint ones, Pacific J. Math. 104 (1983), no. 1, 241–255. MR 683741, DOI 10.2140/pjm.1983.104.241
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part III: Spectral operators, Pure and Applied Mathematics, Vol. VII, Interscience Publishers [John Wiley & Sons], New York-London-Sydney, 1971. With the assistance of William G. Bade and Robert G. Bartle. MR 0412888
- D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. MR 929030
- A. V. Kiselev and M. M. Faddeev, On the similarity problem for nonselfadjoint operators with absolutely continuous spectrum, Funktsional. Anal. i Prilozhen. 34 (2000), no. 2, 78–81 (Russian); English transl., Funct. Anal. Appl. 34 (2000), no. 2, 143–145. MR 1773850, DOI 10.1007/BF02482431
- G. Sh. Guseinov, On the concept of spectral singularities, Pramana 73(3):587–603, 2009.
- M. Harmer, Hermitian symplectic geometry and extension theory, J. Phys. A 33 (2000), no. 50, 9193–9203. MR 1804888, DOI 10.1088/0305-4470/33/50/305
- A. Hussein, Maximal quasi–accretive Laplacians on finite metric graphs, J. Evol. Equ., DOI 10.1007/s00028-014-0224-8, 2014.
- A. Hussein, Sign-indefinite second order differential operators on finite metric graphs, Preprint: arXiv:1211.4144, 2013 (to appear in Rev. Math. Phys.).
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Alexander V. Kiselev, Similarity problem for non-self-adjoint extensions of symmetric operators, Methods of spectral analysis in mathematical physics, Oper. Theory Adv. Appl., vol. 186, Birkhäuser Verlag, Basel, 2009, pp. 267–283. MR 2732083, DOI 10.1007/978-3-7643-8755-6_{1}4
- D. Kochan, D. Krejčiřík, R. Novák, and P. Siegl, The Pauli equation with complex boundary conditions, J. Phys. A 45 (2012), no. 44, 444019, 14. MR 2991886, DOI 10.1088/1751-8113/45/44/444019
- V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A 32 (1999), no. 4, 595–630. MR 1671833, DOI 10.1088/0305-4470/32/4/006
- Vadim Kostrykin and Robert Schrader, Laplacians on metric graphs: eigenvalues, resolvents and semigroups, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 201–225. MR 2277618, DOI 10.1090/conm/415/07870
- V. Kostrykin and R. Schrader, The inverse scattering problem for metric graphs and the traveling salesman problem, Preprint: arXiv:math-ph/0603010v1, 2006.
- Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader, Heat kernels on metric graphs and a trace formula, Adventures in mathematical physics, Contemp. Math., vol. 447, Amer. Math. Soc., Providence, RI, 2007, pp. 175–198. MR 2423580, DOI 10.1090/conm/447/08691
- Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader, Contraction semigroups on metric graphs, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 423–458. MR 2459885, DOI 10.1090/pspum/077/2459885
- Vadim Kostrykin, Jürgen Potthoff, and Robert Schrader, Brownian motions on metric graphs, J. Math. Phys. 53 (2012), no. 9, 095206, 36. MR 2905788, DOI 10.1063/1.4714661
- D. Krejčiřík, H. Bíla, and M. Znojil, Closed formula for the metric in the Hilbert space of a $\scr {PT}$-symmetric model, J. Phys. A 39 (2006), no. 32, 10143–10153. MR 2252706, DOI 10.1088/0305-4470/39/32/S15
- David Krejčiřík, Calculation of the metric in the Hilbert space of a $\scr {PT}$-symmetric model via the spectral theorem, J. Phys. A 41 (2008), no. 24, 244012, 6. MR 2455810, DOI 10.1088/1751-8113/41/24/244012
- David Krejčiřík and Petr Siegl, $\scr {PT}$-symmetric models in curved manifolds, J. Phys. A 43 (2010), no. 48, 485204, 30. MR 2738140, DOI 10.1088/1751-8113/43/48/485204
- David Krejčiřík, Petr Siegl, and Jakub Železný, On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators, Complex Anal. Oper. Theory 8 (2014), no. 1, 255–281. MR 3147722, DOI 10.1007/s11785-013-0301-y
- Peter Kuchment, Graph models for waves in thin structures, Waves Random Media 12 (2002), no. 4, R1–R24. MR 1937279, DOI 10.1088/0959-7174/12/4/201
- Peter Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004), no. 1, S107–S128. Special section on quantum graphs. MR 2042548, DOI 10.1088/0959-7174/14/1/014
- P. Kurasov, Quantum graphs: Spectral theory and inverse problems, to appear in Journal of Spectral Theory.
- Sergii Kuzhel and Carsten Trunk, On a class of $J$-self-adjoint operators with empty resolvent set, J. Math. Anal. Appl. 379 (2011), no. 1, 272–289. MR 2776471, DOI 10.1016/j.jmaa.2010.12.048
- M. M. Malamud, A criterion for a closed operator to be similar to a selfadjoint operator, Ukrain. Mat. Zh. 37 (1985), no. 1, 49–56, 134 (Russian). MR 780914, DOI 10.1007/BF01056850
- A. S. Markus, Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, vol. 71, American Mathematical Society, Providence, RI, 1988. Translated from the Russian by H. H. McFaden; Translation edited by Ben Silver; With an appendix by M. V. Keldysh. MR 971506, DOI 10.1090/mmono/071
- V. P. Mihaĭlov, On Riesz bases in ${\cal L}_{2}(0,\,1)$, Dokl. Akad. Nauk SSSR 144 (1962), 981–984 (Russian). MR 0149334
- Ali Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 7, 1191–1306. MR 2749385, DOI 10.1142/S0219887810004816
- S. N. Naboko, Conditions for similarity to unitary and selfadjoint operators, Funktsional. Anal. i Prilozhen. 18 (1984), no. 1, 16–27 (Russian). MR 739086
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- F. G. Scholtz, H. B. Geyer, and F. J. W. Hahne, Quasi-Hermitian operators in quantum mechanics and the variational principle, Ann. Physics 213 (1992), no. 1, 74–101. MR 1144600, DOI 10.1016/0003-4916(92)90284-S
- P. Siegl, Système quantitique non-Hermitiens, représentations indécomposables et quantification par états cohérents, PhD thesis, Université Paris Diderot and Czech Technical University in Prague, 2011.
- M. Znojil, Quantum star-graph analogues of PT-symmetric square wells, Can. J. Phys. 90:1287–1293, 2012.
Additional Information
- Amru Hussein
- Affiliation: Institut für Mathematik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 9, 55099 Mainz, Germany
- Email: hussein@mathematik.uni-mainz.de
- David Krejčiřík
- Affiliation: Department of Theoretical Physics, Nuclear Physics Institute ASCR, 25068 Řež, Czech Republic
- Email: krejcirik@ujf.cas.cz
- Petr Siegl
- Affiliation: Mathematical Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
- MR Author ID: 851879
- Email: petr.siegl@math.unibe.ch
- Received by editor(s): June 24, 2013
- Published electronically: August 13, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 367 (2015), 2921-2957
- MSC (2010): Primary 34B45, 47A10, 81Q12; Secondary 47B44
- DOI: https://doi.org/10.1090/S0002-9947-2014-06432-5
- MathSciNet review: 3301887