## Constructing spoke subfactors using the jellyfish algorithm

HTML articles powered by AMS MathViewer

- by Scott Morrison and David Penneys PDF
- Trans. Amer. Math. Soc.
**367**(2015), 3257-3298

## Abstract:

Using Jonesโ quadratic tangles formulas, we automate the construction of the 4442, 3333, 3311, and 2221 spoke subfactors by finding sets of 1-strand jellyfish generators. The 4442 spoke subfactor is new, and the 3333, 3311, and 2221 spoke subfactors were previously known. This is the published version of arXiv:1208.3637.## References

- Stephen Bigelow, Emily Peters, Scott Morrison, and Noah Snyder,
*Constructing the extended Haagerup planar algebra*, Acta Math.**209**(2012), no.ย 1, 29โ82. MR**2979509**, DOI 10.1007/s11511-012-0081-7 - Stephen Bigelow and David Penneys,
*Principal graph stability and the jellyfish algorithm*, Math. Ann.**358**(2014), no.ย 1-2, 1โ24. MR**3157990**, DOI 10.1007/s00208-013-0941-2 - Frank Calegari, Scott Morrison, and Noah Snyder,
*Cyclotomic integers, fusion categories, and subfactors*, Comm. Math. Phys.**303**(2011), no.ย 3, 845โ896. MR**2786219**, DOI 10.1007/s00220-010-1136-2 - David E. Evans and Yasuyuki Kawahigashi,
*Quantum symmetries on operator algebras*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. Oxford Science Publications. MR**1642584** - Frederick M. Goodman, Pierre de la Harpe, and Vaughan F. R. Jones,
*Coxeter graphs and towers of algebras*, Mathematical Sciences Research Institute Publications, vol. 14, Springer-Verlag, New York, 1989. MR**999799**, DOI 10.1007/978-1-4613-9641-3 - Uffe Haagerup,
*Principal graphs of subfactors in the index range $4<[M:N]<3+\sqrt 2$*, Subfactors (Kyuzeso, 1993) World Sci. Publ., River Edge, NJ, 1994, pp.ย 1โ38. MR**1317352** - Richard Han,
*A Construction of the โ2221โ Planar Algebra*, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)โUniversity of California, Riverside. MR**2822034** - Masaki Izumi,
*The structure of sectors associated with Longo-Rehren inclusions. II. Examples*, Rev. Math. Phys.**13**(2001), no.ย 5, 603โ674. MR**1832764**, DOI 10.1142/S0129055X01000818 - Vaughan F. R. Jones,
*The annular structure of subfactors*, Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math., vol. 38, Enseignement Math., Geneva, 2001, pp.ย 401โ463. MR**1929335** - Vaughan F. R. Jones,
*Notes on planar algebras*, http://math.berkeley.edu/~vfr/ VANDERBILT/pl21.pdf, 2011. - Vaughan F. R. Jones,
*Quadratic tangles in planar algebras*, Duke Math. J.**161**(2012), no.ย 12, 2257โ2295. MR**2972458**, DOI 10.1215/00127094-1723608 - Vaughan F. R. Jones and David Penneys,
*The embedding theorem for finite depth subfactor planar algebras*, Quantum Topol.**2**(2011), no.ย 3, 301โ337. MR**2812459**, DOI 10.4171/QT/23 - Yasuyuki Kawahigashi,
*Classification of paragroup actions in subfactors*, Publ. Res. Inst. Math. Sci.**31**(1995), no.ย 3, 481โ517. MR**1355948**, DOI 10.2977/prims/1195164051 - Scott Morrison,
*A formula for the Jones-Wenzl projections*, Unpublished, available at http://tqft.net/math/JonesWenzlProjections.pdf. - Scott Morrison and Emily Peters,
*The little desert? Some subfactors with index in the interval $(5,3+\sqrt {5})$*, Internat. J. Math.**25**(2014), no.ย 8, 1450080, 51. MR**3254427**, DOI 10.1142/S0129167X14500803 - Scott Morrison and David Penneys,
*The affine $A$ and $D$ planar algebras*. In preparation. - Scott Morrison, David Penneys, Emily Peters, and Noah Snyder,
*Subfactors of index less than 5, Part 2: Triple points*, Internat. J. Math.**23**(2012), no.ย 3, 1250016, 33. MR**2902285**, DOI 10.1142/S0129167X11007586 - Scott Morrison, Emily Peters, and Noah Snyder,
*Skein theory for the $D_{2n}$ planar algebras*, J. Pure Appl. Algebra**214**(2010), no.ย 2, 117โ139. MR**2559686**, DOI 10.1016/j.jpaa.2009.04.010 - Scott Morrison and Noah Snyder,
*Subfactors of index less than 5, Part 1: The principal graph odometer*, Comm. Math. Phys.**312**(2012), no.ย 1, 1โ35. MR**2914056**, DOI 10.1007/s00220-012-1426-y - Scott Morrison and Kevin Walker,
*Planar algebras, connections, and Turaev-Viro theory*, preprint available at http://tqft.net/tvc. - Adrian Ocneanu,
*Quantized groups, string algebras and Galois theory for algebras*, Operator algebras and applications, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 136, Cambridge Univ. Press, Cambridge, 1988, pp.ย 119โ172. MR**996454** - Sarah A. Reznikoff,
*Coefficients of the one- and two-gap boxes in the Jones-Wenzl idempotent*, Indiana Univ. Math. J.**56**(2007), no.ย 6, 3129โ3150. MR**2375712**, DOI 10.1512/iumj.2007.56.3140

## Additional Information

**Scott Morrison**- Affiliation: Mathematical Sciences Institute, Australian National University, Canberra ACT 2601, Australia
- MR Author ID: 788724
**David Penneys**- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
- Address at time of publication: Department of Mathematics, University of California, Los Angeles, California 90095
- MR Author ID: 942644
- Received by editor(s): October 15, 2012
- Received by editor(s) in revised form: February 14, 2013
- Published electronically: October 10, 2014
- © Copyright 2014 by the authors
- Journal: Trans. Amer. Math. Soc.
**367**(2015), 3257-3298 - MSC (2010): Primary 18D10, 46L37
- DOI: https://doi.org/10.1090/S0002-9947-2014-06109-6
- MathSciNet review: 3314808