## Congruence formula for certain dihedral twists

HTML articles powered by AMS MathViewer

- by Sudhanshu Shekhar and R. Sujatha PDF
- Trans. Amer. Math. Soc.
**367**(2015), 3579-3598 Request permission

## Abstract:

In this article we prove a congruence formula for the special values of certain dihedral twists of two primitive modular forms of weight two with isomorphic residual Galois representation at a prime $p$.## References

- Thanasis Bouganis,
*Special values of $L$-functions and false Tate curve extensions*, J. Lond. Math. Soc. (2)**82**(2010), no. 3, 596–620. With an appendix by Vladimir Dokchitser. MR**2739058**, DOI 10.1112/jlms/jdq041 - Robert F. Coleman and Bas Edixhoven,
*On the semi-simplicity of the $U_p$-operator on modular forms*, Math. Ann.**310**(1998), no. 1, 119–127. MR**1600034**, DOI 10.1007/s002080050140 - J. E. Cremona,
*Algorithms for modular elliptic curves*, Cambridge University Press, Cambridge, 1992. MR**1201151** - Fred Diamond,
*Congruences between modular forms: raising the level and dropping Euler factors*, Proc. Nat. Acad. Sci. U.S.A.**94**(1997), no. 21, 11143–11146. Elliptic curves and modular forms (Washington, DC, 1996). MR**1491976**, DOI 10.1073/pnas.94.21.11143 - T. Dokchitser and V. Dokchitser,
*Computations in non-commutative Iwasawa theory*, Proc. Lond. Math. Soc. (3)**94**(2007), no. 1, 211–272. With an appendix by J. Coates and R. Sujatha. MR**2294995**, DOI 10.1112/plms/pdl014 - Henri Darmon, Fred Diamond, and Richard Taylor,
*Fermat’s last theorem*, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 1–154. MR**1474977** - Fred Diamond, Matthias Flach, and Li Guo,
*The Tamagawa number conjecture of adjoint motives of modular forms*, Ann. Sci. École Norm. Sup. (4)**37**(2004), no. 5, 663–727 (English, with English and French summaries). MR**2103471**, DOI 10.1016/j.ansens.2004.09.001 - Ernst Kani,
*Binary theta series and modular forms with complex multiplication*, Int. J. Number Theory**10**(2014), no. 4, 1025–1042. MR**3208873**, DOI 10.1142/S1793042114500134 - Ralph Greenberg and Vinayak Vatsal,
*On the Iwasawa invariants of elliptic curves*, Invent. Math.**142**(2000), no. 1, 17–63. MR**1784796**, DOI 10.1007/s002220000080 - Haruzo Hida,
*A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II*, Ann. Inst. Fourier (Grenoble)**38**(1988), no. 3, 1–83. MR**976685**, DOI 10.5802/aif.1141 - Haruzo Hida,
*A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. I*, Invent. Math.**79**(1985), no. 1, 159–195. MR**774534**, DOI 10.1007/BF01388661 - Haruzo Hida,
*Congruence of cusp forms and special values of their zeta functions*, Invent. Math.**63**(1981), no. 2, 225–261. MR**610538**, DOI 10.1007/BF01393877 - K. Rubin and A. Silverberg,
*Families of elliptic curves with constant mod $p$ representations*, Elliptic curves, modular forms, & Fermat’s last theorem (Hong Kong, 1993) Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, pp. 148–161. MR**1363500** - Sudhanshu Shekhar and R. Sujatha,
*Euler characteristic and congruences of elliptic curves*, Münster J. of Math.**7**(2014), 327–343. - V. Vatsal,
*Canonical periods and congruence formulae*, Duke Math. J.**98**(1999), no. 2, 397–419. MR**1695203**, DOI 10.1215/S0012-7094-99-09811-3 - Andrew Wiles,
*Modular elliptic curves and Fermat’s last theorem*, Ann. of Math. (2)**141**(1995), no. 3, 443–551. MR**1333035**, DOI 10.2307/2118559 - W. Stein,
*Modular forms database*, modular.math.washington.edu/Tables.

## Additional Information

**Sudhanshu Shekhar**- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Mumbai-400005, India
- MR Author ID: 1061352
- Email: sudhansu@math.tifr.res.in
**R. Sujatha**- Affiliation: Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z2
- MR Author ID: 293023
- ORCID: 0000-0003-1221-0710
- Email: sujatha@math.ubc.ca
- Received by editor(s): October 27, 2012
- Received by editor(s) in revised form: July 2, 2013
- Published electronically: November 4, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**367**(2015), 3579-3598 - MSC (2010): Primary 14H52, 11F80, 11F11, 11F33
- DOI: https://doi.org/10.1090/S0002-9947-2014-06232-6
- MathSciNet review: 3314817