## Existence and symmetry of positive ground states for a doubly critical Schrödinger system

HTML articles powered by AMS MathViewer

- by Zhijie Chen and Wenming Zou PDF
- Trans. Amer. Math. Soc.
**367**(2015), 3599-3646 Request permission

## Abstract:

We study the following doubly critical Schrödinger system: \[ \begin {cases}-\Delta u -\frac {\lambda _1}{|x|^2}u=u^{2^\ast -1}+ \nu \alpha u^{\alpha -1}v^\beta , \quad x\in \mathbb {R}^N,\\ -\Delta v -\frac {\lambda _2}{|x|^2}v=v^{2^\ast -1} + \nu \beta u^{\alpha }v^{\beta -1}, \quad x\in \mathbb {R}^N,\\ u, v\in D^{1, 2}(\mathbb {R}^N),\quad u, v>0 \hbox {in $\mathbb {R}^N\setminus \{0\}$},\end {cases} \] where $N\ge 3$, $\lambda _1, \lambda _2\in (0, \frac {(N-2)^2}{4})$, $2^\ast =\frac {2N}{N-2}$ and $\alpha >1, \beta >1$ satisfying $\alpha +\beta =2^\ast$. This problem is related to coupled nonlinear Schrödinger equations with critical exponent for Bose-Einstein condensate. For different ranges of $N$, $\alpha$, $\beta$ and $\nu >0$, we obtain positive ground state solutions via some quite different variational methods, which are all radially symmetric. It turns out that the least energy level depends heavily on the relations among $\alpha , \beta$ and $2$. Besides, for sufficiently small $\nu >0$, positive solutions are also obtained via a variational perturbation approach. Note that the Palais-Smale condition cannot hold for any positive energy level, which makes the study via variational methods rather complicated.## References

- Boumediene Abdellaoui, Veronica Felli, and Ireneo Peral,
*Some remarks on systems of elliptic equations doubly critical in the whole $\Bbb R^N$*, Calc. Var. Partial Differential Equations**34**(2009), no. 1, 97–137. MR**2448311**, DOI 10.1007/s00526-008-0177-2 - B. Abdellaoui, I. Peral, and V. Felli,
*Existence and multiplicity for perturbations of an equation involving a Hardy inequality and the critical Sobolev exponent in the whole of $\Bbb R^N$*, Adv. Differential Equations**9**(2004), no. 5-6, 481–508. MR**2099969** - N. Akhmediev and A. Ankiewicz,
*Partially coherent solitons on a finite background*, Phys. Rev. Lett.**82**(1999), 2661-2664. - Antonio Ambrosetti and Eduardo Colorado,
*Standing waves of some coupled nonlinear Schrödinger equations*, J. Lond. Math. Soc. (2)**75**(2007), no. 1, 67–82. MR**2302730**, DOI 10.1112/jlms/jdl020 - Antonio Ambrosetti and Paul H. Rabinowitz,
*Dual variational methods in critical point theory and applications*, J. Functional Analysis**14**(1973), 349–381. MR**0370183**, DOI 10.1016/0022-1236(73)90051-7 - Thierry Aubin,
*Problèmes isopérimétriques et espaces de Sobolev*, J. Differential Geometry**11**(1976), no. 4, 573–598 (French). MR**448404** - Haïm Brézis and Elliott Lieb,
*A relation between pointwise convergence of functions and convergence of functionals*, Proc. Amer. Math. Soc.**88**(1983), no. 3, 486–490. MR**699419**, DOI 10.1090/S0002-9939-1983-0699419-3 - Haïm Brézis and Louis Nirenberg,
*Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents*, Comm. Pure Appl. Math.**36**(1983), no. 4, 437–477. MR**709644**, DOI 10.1002/cpa.3160360405 - Jaeyoung Byeon and Louis Jeanjean,
*Standing waves for nonlinear Schrödinger equations with a general nonlinearity*, Arch. Ration. Mech. Anal.**185**(2007), no. 2, 185–200. MR**2317788**, DOI 10.1007/s00205-006-0019-3 - Wenxiong Chen and Congming Li,
*An integral system and the Lane-Emden conjecture*, Discrete Contin. Dyn. Syst.**24**(2009), no. 4, 1167–1184. MR**2505697**, DOI 10.3934/dcds.2009.24.1167 - Wenxiong Chen, Congming Li, and Biao Ou,
*Classification of solutions for an integral equation*, Comm. Pure Appl. Math.**59**(2006), no. 3, 330–343. MR**2200258**, DOI 10.1002/cpa.20116 - Zhijie Chen and Wenming Zou,
*Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent*, Arch. Ration. Mech. Anal.**205**(2012), no. 2, 515–551. MR**2947540**, DOI 10.1007/s00205-012-0513-8 - Zhijie Chen and Wenming Zou,
*Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case*, Calc. Var. Partial Differential Equations, to appear, DOI 10.1007/s00526-014-0717-x. - B. Esry, C. Greene, J. Burke, and J. Bohn,
*Hartree-Fock theory for double condesates*, Phys. Rev. Lett.**78**(1997), 3594-3597. - Veronica Felli and Angela Pistoia,
*Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth*, Comm. Partial Differential Equations**31**(2006), no. 1-3, 21–56. MR**2209748**, DOI 10.1080/03605300500358145 - D. J. Frantzeskakis,
*Dark solitons in atomic Bose-Einstein condensates: from theory to experiments*, J. Phys. A**43**(2010), no. 21, 213001, 68. MR**2644602**, DOI 10.1088/1751-8113/43/21/213001 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), no. 3, 209–243. MR**544879**, DOI 10.1007/BF01221125 - B. Gidas, Wei Ming Ni, and L. Nirenberg,
*Symmetry of positive solutions of nonlinear elliptic equations in $\textbf {R}^{n}$*, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 369–402. MR**634248** - D. Hall, M. Matthews, J. Ensher, C. Wieman, and E. Cornell,
*Dynamics of component separation in a binary mixture of Bose-Einstein condensates*, Phys. Rev. Lett.**81**(1998), 1539-1542. - Yu. S. Kivshar and B. Luther-Davies,
*Dark optical solitons: physics and applications*, Physics Reports**298**(1998), 81-197. - Elliott H. Lieb and Michael Loss,
*Analysis*, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR**1415616**, DOI 10.2307/3621022 - Tai-Chia Lin and Juncheng Wei,
*Ground state of $N$ coupled nonlinear Schrödinger equations in $\mathbf R^n$, $n\leq 3$*, Comm. Math. Phys.**255**(2005), no. 3, 629–653. MR**2135447**, DOI 10.1007/s00220-005-1313-x - P.-L. Lions,
*The concentration-compactness principle in the calculus of variations. The limit case. I*, Rev. Mat. Iberoamericana**1**(1985), no. 1, 145–201. MR**834360**, DOI 10.4171/RMI/6 - P.-L. Lions,
*The concentration-compactness principle in the calculus of variations. The limit case. II*, Rev. Mat. Iberoamericana**1**(1985), no. 2, 45–121. MR**850686**, DOI 10.4171/RMI/12 - Zhaoli Liu and Zhi-Qiang Wang,
*Multiple bound states of nonlinear Schrödinger systems*, Comm. Math. Phys.**282**(2008), no. 3, 721–731. MR**2426142**, DOI 10.1007/s00220-008-0546-x - L. A. Maia, E. Montefusco, and B. Pellacci,
*Positive solutions for a weakly coupled nonlinear Schrödinger system*, J. Differential Equations**229**(2006), no. 2, 743–767. MR**2263573**, DOI 10.1016/j.jde.2006.07.002 - Alessio Pomponio,
*Coupled nonlinear Schrödinger systems with potentials*, J. Differential Equations**227**(2006), no. 1, 258–281. MR**2233961**, DOI 10.1016/j.jde.2005.09.002 - Boyan Sirakov,
*Least energy solitary waves for a system of nonlinear Schrödinger equations in $\Bbb R^n$*, Comm. Math. Phys.**271**(2007), no. 1, 199–221. MR**2283958**, DOI 10.1007/s00220-006-0179-x - Didier Smets,
*Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities*, Trans. Amer. Math. Soc.**357**(2005), no. 7, 2909–2938. MR**2139932**, DOI 10.1090/S0002-9947-04-03769-9 - Michael Struwe,
*A global compactness result for elliptic boundary value problems involving limiting nonlinearities*, Math. Z.**187**(1984), no. 4, 511–517. MR**760051**, DOI 10.1007/BF01174186 - Michael Struwe,
*Variational methods*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. MR**1411681**, DOI 10.1007/978-3-662-03212-1 - Giorgio Talenti,
*Best constant in Sobolev inequality*, Ann. Mat. Pura Appl. (4)**110**(1976), 353–372. MR**463908**, DOI 10.1007/BF02418013 - Susanna Terracini,
*On positive entire solutions to a class of equations with a singular coefficient and critical exponent*, Adv. Differential Equations**1**(1996), no. 2, 241–264. MR**1364003** - Susanna Terracini and Gianmaria Verzini,
*Multipulse phases in $k$-mixtures of Bose-Einstein condensates*, Arch. Ration. Mech. Anal.**194**(2009), no. 3, 717–741. MR**2563622**, DOI 10.1007/s00205-008-0172-y - Michel Willem,
*Minimax theorems*, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhäuser Boston, Inc., Boston, MA, 1996. MR**1400007**, DOI 10.1007/978-1-4612-4146-1

## Additional Information

**Zhijie Chen**- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- Email: chenzhijie1987@sina.com
**Wenming Zou**- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
- MR Author ID: 366305
- Email: wzou@math.tsinghua.edu.cn
- Received by editor(s): December 13, 2012
- Received by editor(s) in revised form: July 2, 2013
- Published electronically: September 19, 2014
- Additional Notes: This work was supported by NSFC (11025106, 11371212, 11271386) and the Both-Side Tsinghua Fund.
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Trans. Amer. Math. Soc.
**367**(2015), 3599-3646 - MSC (2010): Primary 35J50, 35J47; Secondary 35B33, 35B09
- DOI: https://doi.org/10.1090/S0002-9947-2014-06237-5
- MathSciNet review: 3314818